The Impact of Stress on Laboratory Animals and Variability in Research Outcome

Author's: Fatma A.M. Ahmed
Authors' Affiliations
Animal Behaviour and Husbandry Department, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt.
*CorrespondenceFatma A.M.
Article Type: Review Article     Published: Apr. 29, 2022 Pages: 31-42
DOI:        Views 90       Downloads 0


The laboratory environment offers an enormous amount of chronic and/or acute stress, which can be both social and physiological and require the animal to adapt to allostatic balance. Several aspects of the laboratory environment, such as confinement, cause significant and recurrent stress in laboratory animals, which is inescapable. Several factors such as transportation, handling, noise, restrictions, experimental procedures, and may cause stress which is difficult to manage. It can be even more challenging in the absence of adequate habituation/ desensitization. These may result in several physiological as well as psychological challenges, triggered by the activation of several neuroendocrine pathways, with a variety of complications such as physiological and/or psychological damage. This type of damage may result in stereotypic behaviours like pacing and circling, self-harm, and physiological consequences such as inflammatory reactions, immune dysfunction, susceptibility to diseases, and metabolic disorders. Moreover, some of the stress-mediated outcomes are epigenetic which makes the consequences transgenerational, that is the biology of animals whose immediate generations have been captured in the wild and/or have endured stress in laboratories could be epigenetically transformed compared to their wild counterparts. It is thought that lab animals have different physiological, epigenetic, and psychological differences that make it hard to extrapolate findings from animal studies to humans. These stress factors and their consequences need to be recognized sufficiently by scientists while using animal models for experiments. We have described the physiological, behavioural, and epigenetic consequences of laboratory-induced stress among animals in this review.


Stress, laboratory animals, enriched environment, result variability, epigenetic changes, physiological changes, behaviour changes.

Authors’ Contribution

FAMA conceived and designed the study; collected and analysed data; performed experiments; wrote, and revised the paper.

How to cite

Ahmed, F.A.M., 2022. The Impact of Stress on Laboratory Animals and Variability in Research Outcome. PSM Vet. Res., 7(1): 31-42.


Ahola, M.K., Vapalahti, K.,Lohi, H., 2017. Early weaning increases aggression and stereotypic behaviour in cats. Sci. Rep., 7: 1-9.doi:10.1038/s41598-017-11173-5.

Altholtz, L.Y., Fowler, K.A., Badura, L.L., Kovacs, M.S., 2006. Comparison of the stress response in rats to repeated isoflurane or CO2: O2 anesthesia used for restraint during serial blood collection via the jugular vein. J. Am. Assoc. Lab. Anim. Sci., 45: 17-22.        

Bailey, J., 2018. Does the stress of laboratory life and experimentation on animals adversely affect research data? a critical review. Altern. Lab. Anim., 46: 291-305.doi:10.1177/026119291804600501

Balcombe, J.P., 2006. Laboratory environments and rodents’ behavioural needs: A review. Lab. Anim., 40: 217-235doi:10.1258/002367706777611488

Balcombe, J.P., Barnard, N.D., Sandusky, C., 2004. Laboratory routines cause animal stress. J. Am. Assoc. Lab. Anim. Sci., 43: 42-51.

Boere, V., 2001. Environmental enrichment for neotropical primates in captivity. Cienc.. Rural., 31: 543-551. doi:10.1590/S0103-84782001000300031

Boku, S., Toda, H., Nakagawa, S., Kato, A., Inoue, T., Koyama, T., Hiroi, N., Kusumi, I., 2015. Neonatal maternal separation alters the capacity of adult neural precursor cells to differentiate into neurons via methylation of a retinoic acid receptor gene promoter. Biol. Psychiatr., 77: 335-344.doi:10.1016/j.biopsych.2014.07.008

Bourke, C.H., Capello, C.F., Rogers, S.M., Megan, L.Y., Boss-Williams, K.A., Weiss, J.M., Stowe, Z.N., Owens, M.J., 2013a. Prenatal exposure to escitalopram and/or stress in rats. Psychopharmacol., 228: 231-241.doi:10.1007/s00213-013-3030-z.

Bourke, C.H., Stowe, Z.N., Neigh, G.N., Olson, D.E., Owens, M.J., 2013b. Prenatal exposure to escitalopram and/or stress in rats produces limited effects on endocrine, behavioural, or gene expression measures in adult male rats. Neurotoxicol. Teratol., 39: 100-109.doi:10.1016/

Champagne F.A., Weaver I.C., Diorio J., Dymov S., Szyf, M, Meaney, M.J., 2006. Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinol., 147: 2909-2915. doi:10.1210/en.2005-1119

Chen, J., Evans, A.N., Liu, Y., Honda, M., Saavedra, J.M., Aguilera, G., 2012. Maternal deprivation in rats is associated with corticotrophin-releasing hormone (CRH) promoter hypomethylation and enhances CRH transcriptional responses to stress in adulthood. J. Neuroendocrinol., 24: 1055-1064. doi:10.1111/j.1365-2826.2012.02306.x

Chertkow-Deutsher, Y., Cohen, H., Klein, E., Ben-Shachar, D., 2010. DNA methylation in vulnerability to post-traumatic stress in rats: evidence for the role of the postsynaptic density protein Dlgap2. Int. J. Neuropsychopharmacol., 13: 347-359.

Cooper, J., McGreevy, P., 2007. Stereotypic behaviour in the stabled horse: causes, effects and prevention without compromising horse welfare, in: The welfare of horses, Springer, Dordrecht., pp. 99-124.

Davenport, M.D., Lutz, C.K., Tiefenbacher, S., Novak, M. A., Meyer, J.S., 2008. A rhesus monkey model of self-injury: effects of relocation stress on behaviour and neuroendocrine function. Biol. Psychiatr., 63: 990-996.

Draper, W.A., Bernstein, I.S., 1963. Stereotyped behaviour and cage size. Percept. Mot. Skills., 16: 231-234. doi:10.2466/pms.1963.16.1.231

Egaña-Huguet, J., Soria-Gómez, E., Grandes, P., 2021. The endocannabinoid system in glial cells and their profitable interactions to treat epilepsy: evidence from animal models. Int. J. Mol. Sci., 22: 13231. doi:10.3390/ijms222413231.

Franklin, T.B., Russig, H., Weiss, I.C., Gräff, J., Linder, N., Michalon, A., Vizi, S., Mansuy, I.M., 2010. Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatr., 68:408-415. doi:10.1016/j.biopsych.2010.05.036

Gaskill, B.N., Garner, J.P., 2017. Stressed out: providing laboratory animals with behavioural control to reduce the physiological effects of stress. Lab. Animal., 46: 142-145.

Glaser, R., Kiecolt-Glaser, J.K., 2005. Stress-induced immune dysfunction: implications for health. Nat. Rev. Immunol., 5: 243-251.

Gross, A.N., Engel, A.K.J., Richter, S.H., Garner, J.P., Würbel, H., 2011. Cage-induced stereotypies in female ICR CD-1 mice do not correlate with recurrent perseveration. Behav. Brain. Res., 216: 613-620. doi:10.1016/j.bbr.2010.09.003

Gurfein, B.T., Stamm, A.W., Bacchetti, P., Dallman, M.F., Nadkarni, N.A., Milush, J.M., Touma, C., Palme, R., Di Borgo, C.P., Fromentin, G.,Lown-Hecht, R., 2012. The calm mouse: an animal model of stress reduction. Mol. Med., 18: 606-617. doi:10.2119/molmed.2012.00053

Jensen, P.C., Monk, C., Champagne, F.A., 2012. Epigenetic effects of prenatal stress on11 _-Hydroxysteroid Dehydrogenase-2 in the placenta and fetal brain. PLoSONE., 7: e39791. doi:10.1371/journal.pone.0039791

Kyrou, I., Tsigos, C., 2009. Stress hormones: physiological stress and regulation of metabolism. Curr. Clin. Pharmacol., 9: 787-793. doi:10.1016/j.coph.2009.08.007

Latham, N.R., Mason, G.J., 2008. Maternal deprivation and the development of stereotypic behaviour. Appl. Anim. Behav. Sci., 110: 84-108.doi:1010.1016/j.applanim.2007.03.026

Logan, J.G., Barksdale, D.J., 2008. Allostasis and allostatic load: expanding the discourse on stress and cardiovascular disease. J. Clin. Nurs., 17: 201-208.doi:10.1111/j.1365-2702.2008.02347.x.

Lutz, C.K., 2014. Stereotypic behaviour in nonhuman primates as a model for the human condition. ILAR. J., 55: 284-296.doi:10.1093/ilar/ilu016.

Mason, G., 2006. Stereotypic behaviour in captive animals: fundamentals and implications for welfare and beyond. Stereotypic animal behaviour: fundamentals and applications to welfare. 2: 325-56.

Mason, G., Clubb, R., Latham, N., Vickery, S., 2007. Why and how should we use environmental enrichment to tackle stereotypic behaviour? Appl. Anim. Behav. Sci., 102: 163-188.doi: 10.1016/j.applanim.2006.05.041.

McEwen, B.S., 1998. Stress, adaptation, and disease: Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840, 33-44.doi: 10.1111/j.1749-6632. 1998.tb09546. x.

Meijer, M.K., Sommer, R., Spruijt, B.M., Van Zutphen, L.F.M., Baumans, V., 2007. Influence of environmental enrichment and handling on the acute stress response in individually housed mice. Lab. Anim., 41: 161173.

Mueller, B.R., Bale, T.L., 2008. Sex-specific programming of offspring emotionality after stress early in pregnancy. J.Neurosci., 28: 9055-9065. doi: 10.1523/JNEUROSCI.1424-08.2008.

Murgatroyd, C., Patchev, A.V., Wu, Y., Micale, V., Bockmühl, Y., Fischer, D., Holsboer, F., Wotjak, C.T., Almeida, O.F.X., Spengler, D., 2009. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurosci., 12: 1559-1566.

National Research Council (US) Committee on Recognition and Alleviation of Distress in Laboratory Animals, 2008. Recognition and alleviation of distress in laboratory animals, Washington (DC), National Academies Press (US).

Obernier, J.A., Baldwin, R.L., 2006. Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J., 47: 364-369. doi:10.1093/ilar.47.4.364.

Pekow, C., 2005. Defining, measuring, and interpreting stress in laboratory animals. J. Am. Assoc. Lab. Anim. Sci., 44: 41-45.

Philbin, N., 1998. Towards an understanding of stereotypic behaviour in laboratory macaques. Anim. Technol., 49: 19-33.

Poirier, C., Bateson, M., 2017. Pacing stereotypies in laboratory rhesus macaques: Implications for animal welfare and the validity of neuroscientific findings. Neurosci. Biobehav. Rev., 83: 508-515. doi: 10.1016/j.neubiorev.2017.09.010.

Rambo, C.L., Mocelin, R., Marcon, M., Villanova, D., Koakoski, G., de Abreu, M.S., Oliveira, T.A., Barcellos, L.J., Piato, A.L., Bonan, C.D., 2017. Gender differences in aggression and cortisol levels in zebrafish subjected to unpredictable chronic stress. Physiol.Behav., 171: 50-54.

Roth, T.L., Zoladz, P.R., Sweatt, J.D., Diamond, D.M., 2011. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J. Psychiatr. Res., 45: 919-926. doi: 10.1016/j.jpsychires.2011.01.013.

Rushen, J., Passillé, A.M.B.D., 1992. The scientific assessment of the impact of housing on animal welfare: a critical review. Can. J. Anim. Sci., 72: 721-743.doi:10.4141/cjas92-085.

Sevillano, V., Fiske, S.T., 2019. Stereotypes, emotions, and behaviours associated with animals: A causal test of the Stereotype Content Model and BIAS Map. Group. Process. Intergroup. Relat., 22: 879-900. doi:10.1177/1368430219851560

Sternberg, E.M., 2006. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat. Rev. Immunol., 6: 318-328.doi:10.1038/nri1810.

Tarou, L.R., Bloomsmith, M.A., Maple, T.L., 2005. Survey of stereotypic behaviour in prosimians. Am. J. Primatol., 65: 181-196.doi:10.1002/AJP.20107.

Tatemoto, P., Bernardino, T., Alves, L. Zanella, A.J., 2019. Sham-chewing in sows is associated with decreased fear responses in their offspring. Front. Vet. Sci., 6: 390.

Tracey, K.J., 2009. Reflex control of immunity. Nat. Rev. Immunol., 9:418–428.

Uchida S., Hara K., Kobayashi A., Otsuki K., Yamagata H., Hobara T., 2020. Epi-genetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron., 69:359–372.

Von Borell, E., Hurnik, J.F., 1991. Stereotypic behaviour, adrenocortical function, and open field behaviour of individually confined gestating sows. Physiol. Behav., 49: 709-713.

Wang, A., Nie, W., Li, H., Hou, Y., Yu, Z., Fan, Q., Sun, R., 2014. Epigenetic upregulation of corticotrophin-releasing hormone mediates postnatal maternal separation-induced memory deficiency. PLoS ONE., 9:e94394. doi:10.1371/journal.pone.0094394

Weaver, I.C., Cervoni, N., Champagne, F.A., D’Alessio, A.C., Sharma, S., Seckl, J.R., Dymov, S., Szyf, M., Meaney, M.J., 2004. Epigenetic programming by maternal behaviour. Nat. Neurosci., 7: 847-854. doi: 10.1038/nn1276

Weinstock, M., 2017. Prenatal stressors in rodents: Effects on behaviour. Neurobiol. Stress., 6: 3-13. doi:10.1016/j.ynstr.2016.08.004

Wu, Y., Patchev, A.V., Daniel, G., Almeida, O.F.X., Spengler, D., 2014. Early-life stress reduces DNA methylation of the Pomc gene in male mice. Endocrinol., 155: 1751-1762. doi:10.1210/en.2013-1868

Yu, N.K., Baek, S.H., Kaang, B.K., 2011. DNA methylation-mediated control of learning and memory. Mol. Brain., 4: 1-9.doi:10.1186/1756-6606-4-5

Zoladz, P.R., Conrad, C.D., Fleshner, M., Diamond, D.M., 2008. Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder. Stress., 11: 259-281. doi:10.1080/10253890701768613