The Function of Ammonia Oxidizers Community in the Environment

Author's: Amjed Ginawi, Yunjun Yan
Authors' Affiliations
Article Type: Review Article     Published: Jun. 30, 2019 Pages: 20-36
DOI:        Views 383       Downloads0


This review summarizes the available data regarding the environments of ammonia oxidizers community, the adaptation of ammonia oxidizers communities to shift in the sediment, and denitrifying microbes. The advancements of molecular biology techniques have encouraged the fast recent developments in the sector. Various methods for implementing so are discussed. The function of ammonia oxidizers community and denitrifying microorganism composition was investigated through a high throughput of the 16S rRNA amplicon sequencing procedure. There is a potential need to observe the species-specific appearance of these microorganisms in each environment and determine the relative abundance of several kinds. More effort is required to isolate these microorganisms and determine their functions through biochemical, physiological and molecular techniques. However, the investigation with deoxyribonucleic acid (DNA), antibodies, and the polymerase chain reaction (PCR) was preferred mainly to report the composition of chemolithoautotrophic bacteria.


Ammonia oxidizers community, molecular techniques, ammonia-oxidizing bacteria, ammonia-oxidizing archaea, chemolithoautotrophic bacteria.


Ginawi, A., Yan, Y., 2019. The Function of Ammonia Oxidizers Community in the Environment. PSM Microbiol., 4(2): 20-36.


Aakra, A., Utaker, J.B., Nes, I.F., 1999. RFLP of rRNA genes and sequencing of the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach. Int. J. System. Bacteriol., 49 Pt 1: 123-30.

Adair, K.L., Schwartz, E., 2008. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. Microbial Ecol., 56(3): 420-6.

Ahmed, W., Hughes, B., Harwood, V.J., 2016. Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters. Water, 8(6): 231.

Beaulieu, J.J., Tank, J.L., Hamilton, S.K., Wollheim, W.M., Hall, R.O., Jr., Mulholland, P.J., Peterson, B.J., Ashkenas, L.R., Cooper, L.W., Dahm, C.N., Dodds, W.K., Grimm, N.B., Johnson, S.L., McDowell, W.H., Poole, G.C., Valett, H.M., Arango, C.P., Bernot, M.J., Burgin, A.J., Crenshaw, C.L., Helton, A.M., Johnson, L.T., O’Brien, J.M., Potter, J.D., Sheibley, R.W., Sobota, D.J., Thomas, S.M., 2011. Nitrous oxide emission from denitrification in stream and river networks. Proc. Natl. Acad. Sci. U. S. A., 108(1): 214-9.

Beman, J.M., Popp, B.N., Francis, C.A., 2008. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. Int. Soc. Microbial Ecol. J., 2(4): 429-41.

Bengtson, P., Sterngren, A.E., Rousk, J., 2012. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates. Appl. Environ. Microbiol., 78(16): 5906-11.

Bennett, K., Sadler, N.C., Wright, A.T., Yeager, C., Hyman, M.R., 2016. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea. Appl. Environ. Microbiol., 82(8): 2270-2279.

Bernhard, A.E., Landry, Z.C., Blevins, A., de la Torre, J.R., Giblin, A.E., Stahl, D.A., 2010. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl. Environ. Microbiol., 76(4): 1285-9.

Bock, E., Koops, H.-P., Moller, U.C., Rudert, M., 1990. A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov. Arch. Microbiol., 153(2): 105-110.

Bodelier, P., Libochant, J.A., Blom, C., Laanbroek, H.J., 1996. Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Appl. Environ. Microbiol., 62(11): 4100-7.

Bothe, H., Jost, G., Schloter, M., Ward, B.B., Witzel, K., 2000. Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol. Rev., 24(5): 673-90.

Brochier-Armanet, C., Boussau, B., Gribaldo, S., Forterre, P., 2008. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol., 6(3): 245-52.

Canfield, D.E., Glazer, A.N., Falkowski, P.G., 2010. The evolution and future of Earth’s nitrogen cycle. Sci., 330(6001): 192-6.

Castignetti, D., Gunner, H.B., 1980. Sequential nitrification by an Alcaligenes sp. and Nitrobacter agilis. Can. J. Microbiol., 26(9): 1114-9.

Colloff, M.J., Wakelin, S.A., Gomez, D., Rogers, S.L., 2008. Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management. Soil Biol. Biochem., 40(7): 1637-1645.

Costa, E., Pérez, J., Kreft, J.-U., 2006. Why is metabolic labour divided in nitrification? Trends Microbiol., 14(5): 213-219.

Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R.H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P.H., Wagner, M., 2015. Complete nitrification by Nitrospira bacteria. Nat., 528(7583): 504-9.

Dang, H., Luan, X.W., Chen, R., Zhang, X., Guo, L., Klotz, M.G., 2010. Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea. FEMS Microbiol. Ecol., 72(3): 370-85.

De Boer, W., Tietema, A., Gunnewiek, P.J.A.K., Laanbroek, H.J., 1992. The chemolithotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to ph-dependent nitrifying activity. Soil Biol. Biochem., 24(3): 229-234.

de la Torre, J.R., Walker, C.B., Ingalls, A.E., Konneke, M., Stahl, D.A., 2008. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ. Microbiol., 10(3): 810-8.

DeLong, E.F., 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. U. S. A.,  89(12): 5685-9.

Ebeling, J.M., Timmons, M.B., Bisogni, J.J., 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquac., 257(1-4): 346-358.

Francis, C.A., O’Mullan, G.D., Ward, B.B., 2003. Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiol., 1(2): 129-140.

Fuhrman, J.A., McCallum, K., Davis, A.A., 1992. Novel major archaebacterial group from marine plankton. Nat., 356(6365): 148-9.

Galloway, J.N., 1995. Acid deposition: Perspectives in time and space. Water Air Soil Pollut., 85(1): 15-24.

Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., Asner, G.P., Cleveland, C.C., Green, P.A., Holland, E.A., Karl, D.M., Michaels, A.F., Porter, J.H., Townsend, A.R., V�osmarty, C.J., 2004. Nitrogen Cycles: Past, Present, and Future. Biogeochem., 70(2): 153-226.

Grennfelt, P., Hultberg, H., 1986. Effects of nitrogen deposition on the acidification of terrestrial and aquatic ecosystems. Water Air Soil Pollut., 30(3-4): 945-963.

Haaijer, S.C., Ji, K., van Niftrik, L., Hoischen, A., Speth, D., Jetten, M.S., Damste, J.S., Op den Camp, H.J., 2013. A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water. Front. Microbiol., 4: 60.

Hamaoui, G.S., Rodrigues, J.L.M., Bohannan, B.J.M., Tiedje, J.M., Nüsslein, K., 2016. Land-use change drives abundance and community structure alterations of thaumarchaeal ammonia oxidizers in tropical rainforest soils in Rondônia, Brazil. Appl. Soil Ecol., 107: 48-56.

Hatzenpichler, R., 2012. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl. Environ. Microbiol., 78(21): 7501-10.

He, J.Z., Shen, J.P., Zhang, L.M., Zhu, Y.G., Zheng, Y.M., Xu, M.G., Di, H., 2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ. Microbiol., 9(9): 2364-74.

Head, I.M., Hiorns, W.D., Embley, T.M., McCarthy, A.J., Saunders, J.R., 1993. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J. General Microbiol., 139 Pt 6(6): 1147-53.

Hiorns, W.D., Hastings, R.C., Head, I.M., McCarthy, A.J., Saunders, J.R., Pickup, R.W., Hall, G.H., 1995. Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. Microbiol., 141 ( Pt 11): 2793-800.

Hofstra, N., Bouwman, A.F., 2005. Denitrification in Agricultural Soils: Summarizing Published Data and Estimating Global Annual Rates. Nutr. Cycl. Agroecosys., 72(3): 267-278.

Hooper, A.B., Vannelli, T., Bergmann, D.J., Arciero, D.M., 1997. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek, 71(1-2): 59-67.

Jia, Z., Conrad, R., 2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ. Microbiol., 11(7): 1658-71.

Jin, T., Zhang, T., Yan, Q., 2010. Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. Appl. Microbiol. Biotechnol., 87(3): 1167-76.

Kalanetra, K.M., Bano, N., Hollibaugh, J.T., 2009. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ. Microbiol., 11(9): 2434-45.

Karl, D., Letelier, R., Tupas, L., Dore, J., Christian, J., Hebel, D., 1997. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature, 388(6642): 533-538.

Kasting, J.F., Siefert, J.L., 2002. Life and the evolution of Earth’s atmosphere. Sci., 296(5570): 1066-8.

Ke, X., Lu, Y., 2012. Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil. FEMS Microbiol Ecol., 80(1): 87-97.

Klotz, M.G., Alzerreca, J., Norton, J.M., 1997. A gene encoding a membrane protein exists upstream of the amoA/amoB genes in ammonia oxidizing bacteria: a third member of the amo operon? FEMS Microbiol. Lett., 150(1): 65-73.

Konneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B., Stahl, D.A., 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058): 543-6.

Koops, H.-P., Pommerening-Roser, A., 2001. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol., 37(1): 1-9.

Kowalchuk, G.A., Bodelier, P.L.E., Heilig, G.H.J., Stephen, J.R., Laanbroek, H.J., 1998. Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation. FEMS Microbiol. Ecol., 27(4): 339-350.

Kowalchuk, G.A., Stephen, J.R., 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Ann. Rev. Microbiol., 55: 485-529.

Kozlowski, J.A., Stieglmeier, M., Schleper, C., Klotz, M.G., Stein, L.Y., 2016. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. In. Soc. Microbial Ecol. J., 10(8): 1836-45.

Lehtovirta-Morley, L.E., Stoecker, K., Vilcinskas, A., Prosser, J.I., Nicol, G.W., 2011. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc. Natl. Acad. Sci. U. S. A., 108(38): 15892-7.

Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C., Schleper, C., 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nat., 442(7104): 806-9.

Li, X.R., Xiao, Y.P., Ren, W.W., Liu, Z.F., Shi, J.H., Quan, Z.X., 2012. Abundance and composition of ammonia-oxidizing bacteria and archaea in different types of soil in the Yangtze River estuary. J. Zheijang Uni. Sci. B., 13(10): 769-82.

Lipski, A., Spieck, E., Makolla, A., Altendorf, K., 2001. Fatty acid profiles of nitrite-oxidizing bacteria reflect their phylogenetic heterogeneity. System. Appl. Microbiol., 24(3): 377-84.

Liu, J., Yu, Z., Yao, Q., Sui, Y., Shi, Y., Chu, H., Tang, C., Franks, A.E., Jin, J., Liu, X., Wang, G., 2018. Ammonia-Oxidizing Archaea Show More Distinct Biogeographic Distribution Patterns than Ammonia-Oxidizing Bacteria across the Black Soil Zone of Northeast China. Front. Microbiol., 9: 171.

Liu, W.T., Marsh, T.L., Cheng, H., Forney, L.J., 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol., 63(11): 4516-22.

Lueders, T., Friedrich, M.W., 2003. Evaluation of PCR Amplification Bias by Terminal Restriction Fragment Length Polymorphism Analysis of Small-Subunit rRNA and mcrA Genes by Using Defined Template Mixtures of Methanogenic Pure Cultures and Soil DNA Extracts. Appl. Environ. Microbiol., 69(1): 320-326.

Martens-Habbena, W., Berube, P.M., Urakawa, H., de la Torre, J.R., Stahl, D.A., 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nat., 461(7266): 976-9.

Mintie, A.T., Heichen, R.S., Cromack, J., K., Myrold, D.D., Bottomley, P.J., 2003. Ammonia-Oxidizing Bacteria along Meadow-to-Forest Transects in the Oregon Cascade Mountains. Appl. Environ. Microbiol., 69(6): 3129-3136.

Monteiro, M., Seneca, J., Magalhaes, C., 2014. The history of aerobic ammonia oxidizers: from the first discoveries to today. J. Microbiol., 52(7): 537-47.

Mosier, A.C., Francis, C.A., 2008. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ. Microbiol., 10(11): 3002-16.

Muller, F., Brissac, T., Le Bris, N., Felbeck, H., Gros, O., 2010. First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat. Environ. Microbiol., 12(8): 2371-83.

Nakagawa, T., Mori, K., Kato, C., Takahashi, R., Tokuyama, T., 2007. Distribution of Cold-Adapted Ammonia-Oxidizing Microorganisms in the Deep-Ocean of the Northeastern Japan Sea. Microbes and Environ., 22(4): 365-372.

Okano, Y., Hristova, K.R., Leutenegger, C.M., Jackson, L.E., Denison, R.F., Gebreyesus, B., Lebauer, D., Scow, K.M., 2004. Application of Real-Time PCR To Study Effects of Ammonium on Population Size of Ammonia-Oxidizing Bacteria in Soil. Appl. Environ. Microbiol., 70(2): 1008-1016.

Palomo, A., Jane Fowler, S., Gulay, A., Rasmussen, S., Sicheritz-Ponten, T., Smets, B.F., 2016. Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp. Int. Soc. Microbial Ecol. J., 10(11): 2569-2581.

Phillips, C.J., Smith, Z., Embley, T.M., Prosser, J.I., 1999. Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Northwestern Mediterranean Sea. Appl. Environ. Microbiol., 65(2): 779-786.

Pinay, G., Bernal, S., Abbott, B.W., Lupon, A., Marti, E., Sabater, F., Krause, S., 2018. Riparian Corridors: A New Conceptual Framework for Assessing Nitrogen Buffering Across Biomes. Front. Environ. Sci., 6(47).

Pinto, A.J., Marcus, D.N., Ijaz, U.Z., Bautista-de Lose Santos, Q.M., Dick, G.J., Raskin, L., 2016. Metagenomic Evidence for the Presence of Comammox Nitrospira-Like Bacteria in a Drinking Water System. mSphere, 1(1): pii: e00054-15. doi: 10.1128/mSphere.00054-15.

Pommerening-Röser, A., Rath, G., Koops, H.-P., 1996. Phylogenetic Diversity within the Genus Nitrosomonas. System. Appl. Microbiol. 19(3): 344-351.

Powers, L., Werne, J.P., Vanderwoude, A.J., Sinninghe Damsté, J.S., Hopmans, E.C., Schouten, S., 2010. Applicability and calibration of the TEX86 paleothermometer in lakes. Org. Geochem., 41(4): 404-413.

Prosser, J.I., Nicol, G.W., 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol., 20(11): 523-31.

Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M.C., Koops, H.P., Wagner, M., 2000. Phylogeny of All Recognized Species of Ammonia Oxidizers Based on Comparative 16S rRNA and amoA Sequence Analysis: Implications for Molecular Diversity Surveys. Appl. Environ. Microbiol., 66(12): 5368-5382.

Roesch, L.F., Fulthorpe, R.R., Riva, A., Casella, G., Hadwin, A.K., Kent, A.D., Daroub, S.H., Camargo, F.A., Farmerie, W.G., Triplett, E.W., 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. Int. Soc. Microbial Ecol. J., 1(4): 283-90.

Rotthauwe, J.H., Witzel, K.P., Liesack, W., 1997. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol., 63(12): 4704-4712.

Santoro, A.E., Casciotti, K.L., Francis, C.A., 2010. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ. Microbiol., 12(7): 1989-2006.

Sayavedra-Soto, L.A., Gvakharia, B., Bottomley, P.J., Arp, D.J., Dolan, M.E., 2010. Nitrification and degradation of halogenated hydrocarbons–a tenuous balance for ammonia-oxidizing bacteria. Appl. Microbiol. Biotechnol., 86(2): 435-44.

Schleper, C., Nicol, G.W., 2010. Ammonia-oxidising archaea–physiology, ecology and evolution. Adv. Appl. Microbiol., 57: 1-41.

Shen, J.P., Zhang, L.M., Di, H.J., He, J.Z., 2012. A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Front. Microbiol., 3: 296.

Smith, C.J., Osborn, A.M., 2009. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol., 67(1): 6-20.

Spang, A., Hatzenpichler, R., Brochier-Armanet, C., Rattei, T., Tischler, P., Spieck, E., Streit, W., Stahl, D.A., Wagner, M., Schleper, C., 2010. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol., 18(8): 331-40.

Speksnijder, A.G., Kowalchuk, G.A., Roest, K., Laanbroek, H.J., 1998. Recovery of a Nitrosomonas-like 16S rDNA sequence group from freshwater habitats. System. Appl. Microbiol., 21(2): 321-30.

Spieck, E., Bock, E., 2005. The Lithoautotrophic Nitrite-Oxidizing Bacteria. Bergey´s manual of systematic bacteriology, 2. Springer Science+Business Media., New York.

Stahl, D.A., de la Torre, J.R., 2012. Physiology and diversity of ammonia-oxidizing archaea. Ann. Rev. Microbiol., 66: 83-101.

Stephen, J.R., Kowalchuk, G.A., Bruns, M.A.V., McCaig, A.E., Phillips, C.J., Embley, T.M., Prosser, J.I., 1998. Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl. Environ. Microbiol., 64(8): 2958-65.

Stroo, H.F., Klein, T.M., Alexander, M., 1986. Heterotrophic nitrification in an Acid forest soil and by an Acid-tolerant fungus. Appl. Environ. Microbiol., 52(5): 1107-11.

Suzuki, I., Dular, U., Kwok, S.C., 1974. Ammonia or Ammonium Ion as Substrate for Oxidation by Nitrosomonas europaea Cells and Extracts. J. Bacteriol., 120(1): 556-558.

Thomson, A.J., Giannopoulos, G., Pretty, J., Baggs, E.M., Richardson, D.J., 2012. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 367(1593): 1157-68.

Tourna, M., Stieglmeier, M., Spang, A., Konneke, M., Schintlmeister, A., Urich, T., Engel, M., Schloter, M., Wagner, M., Richter, A., Schleper, C., 2011. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. U. S. A., 108(20): 8420-5.

Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., Schleper, C., 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol., 7(12): 1985-95.

Valentine, D.L., 2007. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat. Rev. Microbiol., 5: 316.

van Kessel, M.A., Speth, D.R., Albertsen, M., Nielsen, P.H., Op den Camp, H.J., Kartal, B., Jetten, M.S., Lucker, S., 2015. Complete nitrification by a single microorganism. Nat., 528(7583): 555-9.

Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W., Fouts, D.E., Levy, S., Knap, A.H., Lomas, M.W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y.H., Smith, H.O., 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Sci., 304(5667): 66-74.

Walker, C.B., de la Torre, J.R., Klotz, M.G., Urakawa, H., Pinel, N., Arp, D.J., Brochier-Armanet, C., Chain, P.S., Chan, P.P., Gollabgir, A., Hemp, J., Hugler, M., Karr, E.A., Konneke, M., Shin, M., Lawton, T.J., Lowe, T., Martens-Habbena, W., Sayavedra-Soto, L.A., Lang, D., Sievert, S.M., Rosenzweig, A.C., Manning, G., Stahl, D.A., 2010. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. U. S. A., 107(19): 8818-23.

Wang, B., Zhao, J., Guo, Z., Ma, J., Xu, H., Jia, Z., 2015. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. Int. Soc. Microbial Ecol. J., 9(5): 1062-75.

Wang, B., Zheng, Y., Huang, R., Zhou, X., Wang, D., He, Y., Jia, Z., 2014. Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon. Appl. Environ. Microbiol., 80(5): 1684-91.

Wang, C., Zhu, G., Wang, W., Yin, C., 2013. Preliminary study on the distribution of ammonia oxidizers and their contribution to potential ammonia oxidation in the plant-bed/ditch system of a constructed wetland. J. Soils and Sedim., 13(9): 1626-1635.

Wang, L., Li, Y., Niu, L., Zhang, W., Zhang, H., Wang, L., Wang, P., 2018. Response of ammonia oxidizing archaea and bacteria to decabromodiphenyl ether and copper contamination in river sediments. Chemosphere, 191: 858-867.

Wang, S., Wang, Y., Feng, X., Zhai, L., Zhu, G., 2011. Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Appl. Microbiol. Biotechnol., 90(2): 779-87.

Ward, B.B., 1996. Nitrification and Denitrification: Probing the Nitrogen Cycle in Aquatic Environments. Microbial Ecol., 32(3): 247-61.

Ward, B.B., Voytek, M.A., Witzel, K., 1997. Phylogenetic Diversity of Natural Populations of Ammonia Oxidizers Investigated by Specific PCR Amplification. Microbial Ecol., 33(2): 87-96.

Watson, S.W., Bock, E., Harms, H., Koops, H.-P., Hooper, A.B., 1989. Nitrifying bacteria. Bergey’s manual of systematic bacteriology, 3. Baltimore, Md: The Williams and Wilkins Co.

Watson, S.W., Bock, E., Valois, F.W., Waterbury, J.B., Schlosser, U., 1986. Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol., 144(1): 1-7.

Whitby, C.B., Saunders, J.R., Rodriguez, J., Pickup, R.W., McCarthy, A., 1999. Phylogenetic differentiation of two closely related Nitrosomonas spp. That inhabit different sediment environments in an oligotrophic freshwater lake. Applied and Environ. Microbiol., 65(11): 4855-62.

Whittaker, M., Bergmann, D., Arciero, D., Hooper, A.B., 2000. Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochimica et Biophysica Acta, 1459(2-3): 346-355.

Wuchter, C., Abbas, B., Coolen, M.J., Herfort, L., van Bleijswijk, J., Timmers, P., Strous, M., Teira, E., Herndl, G.J., Middelburg, J.J., Schouten, S., Sinninghe Damste, J.S., 2006. Archaeal nitrification in the ocean. Proc. Natl. Acad. Sci. U. S. A., 103(33): 12317-22.

Zhang, L.M., Offre, P.R., He, J.Z., Verhamme, D.T., Nicol, G.W., Prosser, J.I., 2010. Autotrophic ammonia oxidation by soil thaumarchaea. Proc. Natl. Acad. Sci. U. S. A., 107(40): 17240-5.

Zhang, Y., Chen, L., Dai, T., Tian, J., Wen, D., 2015. The influence of salinity on the abundance, transcriptional activity, and diversity of AOA and AOB in an estuarine sediment: a microcosm study. Appl. Microbiol. Biotechnol., 99(22): 9825-33.

Zhou, L., Wang, S., Zou, Y., Xia, C., Zhu, G., 2015. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China. Sci. Rep., 5: 15969.

Related Content