Silver Nanoparticles: Synthesis, Medical Application, and Toxicity Effects

Author's: Hend M. M. Selim, Doaa S. S. Mohamed, Hager M. G. Eskander
Authors' Affiliations
Article Type: Review Article     Published: Dec. 13, 2017 Pages: 45-53
DOI:        Views 1662       Downloads 0


Silver nanoparticles (AgNps) are particles of silver that range in size from 1- 100 nm. Silver nanoparticles are of unique properties and attract a lot of attention due to their wide range of potential application in medicine, electronics, cosmetics and many other fields. Although, chemical and physical methods are the major methods for AgNp synthesis, they are expensive and can absorb toxic materials into them. In this review we focus on biological synthesis of AgNps by fungi, bacteria, and plant extracts as a saver, more feasible alternative. Some recent medical applications such as Anti-inflammatory effects, cancer treatment, and mechanism of antimicrobial effect are described. We also discussed the toxicity of AgNps, its effect on environment and human health.


Silver nanoparticle, Antimicrobial action, Synthesis, Medical applications, Silver nanotoxicity.

Cite this article:

Selim, H.M., Mohamed, D.S., Eskander, H.M.G., 2017. Silver Nanoparticles: Synthesis, Medical Application, and Toxicity Effects. Int. J. Nanotech. Allied. Sci., 1(1): 45-53.


Ahamed, M., Alsalhi, M.S., Siddiqui, M.K., 2010. Silver nanoparticle applications and human health. Clin. Chim. Acta, 411(23-24): 1841-8.

Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., Sastry, M., 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B. Biointerfaces, 28(4): 313-318.

Allsopp, M., Walters, A. & Santillo, D. , 2007. Nanotechnologies and nanomaterials in electrical and electronic goods: a review of uses and health concerns. Greenpeace Research Laboratories Technical Note.

Amulyavichus, A., Daugvila, A., Davidonis, R., Sipavichus, C., 1998. Study of chemical composition of nanostructural materials prepared by laser cutting of metals. Fiz. Met. Metalloved., 85(1): 111-117.

Anjum, S., Abbasi, B.H., 2016. Biomimetic synthesis of antimicrobial silver nanoparticles using in vitro-propagated plantlets of a medicinally important endangered species: Phlomis bracteosa. International Journal of Nanomedicine, 11: 1663-1675.

Banchelli, M., Tiribilli, B., de Angelis, M., Pini, R., Caminati, G., Matteini, P., 2016. Controlled veiling of silver nanocubes with graphene oxide for improved surface-enhanced Raman scattering detection. ACS applied materials & interfaces, 8(4): 2628-2634.

betle Broth, P., 2012. Phytofabrication and characterization of silver nanoparticles from Piper betle broth. Research Journal of Nanoscience and nanotechnology, 2(1): 17-23.

Bhatia, S., 2016. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications, Natural polymer drug delivery systems. Springer, pp. 33-93.

Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., Kahru, A., 2013. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol., 87(7): 1181-1200.

Boroumand Moghaddam, A., Namvar, F., Moniri, M., Md. Tahir, P., Azizi, S., Mohamad, R., 2015. Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications. Molecules, 20(9): 16540.

Braydich-Stolle, L., Hussain, S., Schlager, J.J., Hofmann, M.-C., 2005. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicological sciences : an official journal of the Society of Toxicology, 88(2): 412-419.

Carlson, C., Hussain, S.M., Schrand, A.M., Braydich-Stolle, L.K., Hess, K.L., Jones, R.L., Schlager, J.J., 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B, 112(43): 13608-19.

Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A., Sastry, M., 2006. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol. Prog., 22(2): 577-583.

Chen, M., Feng, Y.-G., Wang, X., Li, T.-C., Zhang, J.-Y., Qian, D.-J., 2007. Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir, 23(10): 5296-5304.

Christy, A.J., Umadevi, M., 2012. Synthesis and characterization of monodispersed silver nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(3): 035013.

Danilczuk, M., Lund, A., Sadlo, J., Yamada, H., Michalik, J., 2006. Conduction electron spin resonance of small silver particles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 63(1): 189-191.

De, M., Ghosh, P.S., Rotello, V.M., 2008. Applications of nanoparticles in biology. Adv. Mater., 20(22): 4225-4241.

Deljou, A., Goudarzi, S., 2016. Green Extracellular Synthesis of the Silver Nanoparticles Using Thermophilic Bacillus Sp. AZ1 and its Antimicrobial Activity Against Several Human Pathogenetic Bacteria. Iran. J. Biotechnol., 14(2): 25-32.

El-Shanshoury, A.E.-R.R., ElSilk, S.E., Ebeid, M.E., 2011. Extracellular Biosynthesis of Silver Nanoparticles Using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and Their Antimicrobial Activities. ISRN Nanotechnology, 2011: 7.

Fayaz, A.M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P.T., Venketesan, R., 2010. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine, 6(1): 103-9.

Fu, J.-Z., Liu, Y.-Y., Gu, P.-Y., Shang, D.-L., Lin, Z.-Y., Yao, B.-X., Weng, S.-Z., 2000. Spectroscopic Charcterization on the Biosorption and Bioreduction of Ag (I) by Lactobacillus sp. A09. Acta Physico-Chimica Sinca, 16(09): 779-782.

Gaffet, E., Tachikart, M., El Kedim, O., Rahouadj, R., 1996. Nanostructural materials formation by mechanical alloying: morphologic analysis based on transmission and scanning electron microscopic observations. Mater. Charact., 36(4-5): 185-190.

Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H., Jose-Yacaman, M., 2003. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir, 19(4): 1357-1361.

Guo, D., Zhu, L., Huang, Z., Zhou, H., Ge, Y., Ma, W., Wu, J., Zhang, X., Zhou, X., Zhang, Y., Zhao, Y., Gu, N., 2013. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials, 34(32): 7884-94.

Haefeli, C., Franklin, C., Hardy, K.E., 1984. Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J. Bacteriol., 158(1): 389-392.

Hebeish, A., El-Rafie, M., El-Sheikh, M., Seleem, A.A., El-Naggar, M.E., 2014. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int. J. Biol. Macromol., 65: 509-515.

Husseiny, M., El-Aziz, M.A., Badr, Y., Mahmoud, M., 2007. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4): 1003-1006.

Jeyaraj, M., Sathishkumar, G., Sivanandhan, G., MubarakAli, D., Rajesh, M., Arun, R., Kapildev, G., Manickavasagam, M., Thajuddin, N., Premkumar, K., Ganapathi, A., 2013. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf. B. Biointerfaces, 106: 86-92.

Jiang, H., Moon, K.-s., Zhang, Z., Pothukuchi, S., Wong, C., 2006. Variable frequency microwave synthesis of silver nanoparticles. J. Nanopart. Res., 8(1): 117-124.

Jung, J.H., Oh, H.C., Noh, H.S., Ji, J.H., Kim, S.S., 2006. Metal nanoparticle generation using a small ceramic heater with a local heating area. J. Aerosol Sci, 37(12): 1662-1670.

Kalishwaralal, K., Deepak, V., Ram Kumar Pandian, S., Kottaisamy, M., BarathmaniKanth, S., Kartikeyan, B., Gurunathan, S., 2010. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B. Biointerfaces, 77(2): 257-62.

Khan, I., Saeed, K., Khan, I., 2017. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry.

Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., Cho, M.H., 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine, 3(1): 95-101.

Kim, S., Choi, J.E., Choi, J., Chung, K.H., Park, K., Yi, J., Ryu, D.Y., 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro, 23(6): 1076-84.

Kim, Y.S., Song, M.Y., Park, J.D., Song, K.S., Ryu, H.R., Chung, Y.H., Chang, H.K., Lee, J.H., Oh, K.H., Kelman, B.J., Hwang, I.K., Yu, I.J., 2010. Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol., 7: 20.

KittlerS., G., C. Diendorf, J. Köller,M.  and Epple, M. , 2010. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chem. Mater, 22(16): 4548–4554.

Klaus, T., Joerger, R., Olsson, E., Granqvist, C.-G., 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96(24): 13611-13614.

Kone, B.C., Kaleta, M., Gullans, S.R., 1988. Silver ion (Ag+)-induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: reversal by thiol reagents. J Membr Biol, 102(1): 11-9.

Kruis, F.E., Fissan, H., Rellinghaus, B., 2000. Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Materials Science and Engineering: B, 69: 329-334.

Lee, D.K., Kang, Y.S., 2004. Synthesis of silver nanocrystallites by a new thermal decomposition method and their characterization. Etri Journal, 26(3): 252-256.

Lengke, M.F., Fleet, M.E., Southam, G., 2007. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir, 23(5): 2694-2699.

McAuliffe, M.E., and Perry, M. J., , 2007. Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology, 1(3): 204–210.

Milić, M., Leitinger, G., Pavičić, I., Zebić Avdičević, M., Dobrović, S., Goessler, W., Vinković Vrček, I., 2015. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J. Appl. Toxicol., 35(6): 581-592.

Mishra, M., Kumar, H., Tripathi, K., 2008. Diabetic delayed wound healing and the role of silver nanoparticles. Dig J Nanomater Bios, 3(2): 49-54.

Mohanpuria, P., Rana, N.K., Yadav, S.K., 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res., 10(3): 507-517.

Nadworny, P.L., Wang, J., Tredget, E.E., Burrell, R.E., 2008. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomed. Nanotechnol. Biol. Med., 4(3): 241-251.

Panyala, N., Pena-Mendze, E., Havel, J., 2008. Silver or silver nanoparticles: A hazardous threat to the environment and human health? Journal of Applied Biomedicine, 6(3): 117-129.

Pileni, M., 2000. Fabrication and physical properties of self-organized silver nanocrystals. Pure Appl. Chem., 72(1-2): 53-65.

Prabhu, S., Poulose, E.K., 2012. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International nano letters, 2(1): 32.

Pugazhenthiran, N., Anandan, S., Kathiravan, G., Prakash, N.K.U., Crawford, S., Ashokkumar, M., 2009. Microbial synthesis of silver nanoparticles by Bacillus sp. J. Nanopart. Res., 11(7): 1811.

Salkar, R., Jeevanandam, P., Aruna, S., Koltypin, Y., Gedanken, A., 1999. The sonochemical preparation of amorphous silver nanoparticles. J. Mater. Chem., 9(6): 1333-1335.

Senjen, R., 2007. Nanosilver – a threat to soil , water and human health ?

Shankar, S.S., Rai, A., Ahmad, A., Sastry, M., 2004. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 275(2): 496-502.

Sharma, V.K., Yngard, R.A., Lin, Y., 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 145(1-2): 83-96.

Shin, S.-H., Ye, M.-K., Kim, H.-S., Kang, H.-S., 2007. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int. Immunopharmacol., 7(13): 1813-1818.

Sintubin, L., De Windt, W., Dick, J., Mast, J., van der Ha, D., Verstraete, W., Boon, N., 2009. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol., 84(4): 741-749.

Sintubin, L., Verstraete, W., Boon, N., 2012. Biologically produced nanosilver: current state and future perspectives. Biotechnol. Bioeng., 109(10): 2422-2436.

Sotiriou, G.A., Sannomiya, T., Teleki, A., Krumeich, F., Vörös, J., Pratsinis, S.E., 2010. Non‐toxic dry‐coated nanosilver for plasmonic biosensors. Adv. Funct. Mater., 20(24): 4250-4257.

Sriram, M.I., Kanth, S.B., Kalishwaralal, K., Gurunathan, S., 2010. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomedicine, 5: 753-62.

Thirumalai Arasu, V., Prabhu, D., Soniya, M., 2010. Stable silver nanoparticle synthesizing methods and its applications. J. Bio. Sci. Res, 1: 259-270.

Tien, D.-C., Tseng, K.-H., Liao, C.-Y., Huang, J.-C., Tsung, T.-T., 2008. Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J. Alloys Compd., 463(1-2): 408-411.

Tran, Q.H., Nguyen, V.Q., Le, A.T., 2013. Silver nanoparticles: synthesis, properties, toxicology, application and perspectives.

Vaidyanathan, R., Gopalram, S., Kalishwaralal, K., Deepak, V., Pandian, S.R.K., Gurunathan, S., 2010. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf. B. Biointerfaces, 75(1): 335-341.

Verma, R.P., Hansch, C., 2007. Matrix metalloproteinases (MMPs): chemical–biological functions and (Q) SARs. Biorg. Med. Chem., 15(6): 2223-2268.

Wong, K.K., Liu, X., 2010. Silver nanoparticles—the real “silver bullet” in clinical medicine? MedChemComm, 1(2): 125-131.

Wood, C.M., Playle, R. C., & Hogstrand, C., 1999. Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environ. Toxicol. Chem., 18(1): 71-83.

Zhu, J., Liao, X., Chen, H.-Y., 2001. Electrochemical preparation of silver dendrites in the presence of DNA. Mater. Res. Bull., 36(9): 1687-1692.