Role of Quercetin against Polychlorinated Biphenyl (Aroclors 1242 and 1254) induced Changes in Biochemical Parameters and Antioxidant Status in Liver, Kidney, Brain, Heart and Testes of Rats

Author's: Sarah Samir Othman1*, Medhat Haroun2, Mokhtar Ibrahim Yousef3
Authors' Affiliations
1Pharmaceutical Bioproducts Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.2Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Egypt.3Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Egypt. Delta University for Science and Technology, Gamasa, Egypt.*CorrespondenceSarah Samir OthmanEmail:sarahosman2014@yahoo.com
Article Type: Research Article     Published: Mar. 20, 2022 Pages: 69-78
DOI:        Views 215       Downloads 0

Abstract:

Polychlorinated biphenyls (PCBs) are lipophilic environmental pollutants that have been found in practically every component of the world’s ecosystem as contaminants. PCBs have been proven to induce lipid peroxidation via causing oxidative damage to biomolecules, antioxidant enzyme regulation, and oxidative stress. In this research, we looked into the effect of quercetin on the antioxidant status of PCBs(Aroclors 1242 and 1254)-induced toxicity in male rats. The protective role of quercetin (50 mg/kg body weight/day) was evaluated in the mixture of Aroclors 1242 and 1254-induced toxicity in rat blood, liver, kidney, brain, lung, heart, and testes. Animals were classified into four equal groups, control, quercetin (50 mg/kg BW), the mixture of Aroclors 1242 and 1254 (1:1, 2 mg/ kg body weight/day), and quercetin plus the mixture of aroclors, respectively. The respective doses of quercetin and the mixture of Aroclors were orally treated daily for 30 days. The mixture of aroclors induced an increase in plasma, liver, kidney, brain, lung, heart, and testes thiobarbituric acid reactive substances (TBARS), while the activities of antioxidant enzymes (GST, SOD, and GPx) were decreased. Transaminases and phosphatases were elevated in plasma and decreased in liver. Aroclors increased glucose, urea, and creatinine, while decreased immunoglobulin G (IgG), total protein, albumin, globulin, and bilirubin. Quercetin alone reduced TBARS, urea, creatinine, and bilirubin and increased antioxidant enzymes. The presence of quercetin with the mixture of Aroclors minimized its toxicity. In conclusion, administration of quercetin with 1242 and 1254 Aroclors mixture may alleviate its harmful effects.

Keywords

Aroclors 1242 and 1254,

Quercetin,

Rats,

Oxidative stress,

Antioxidants,

IgG,

Biochemical parameters.

Authors’ Contribution

MIY designed the study; MIY, MH, and SSO performed experiments;  MIY and MH analyzed data; SSO wrote and MIH revised the paper; SSO gave the final approval for publication.

How to cite

Othman, S.S., Haroun, M., Yousef, M.I., 2022. Role of Quercetin against Polychlorinated Biphenyl (Aroclors 1242 and 1254) induced Changes in Biochemical Parameters and Antioxidant Status in Liver, Kidney, Brain, Heart and Testes of Rats. PSM Biol. Res., 7(2): 69-78.

REFERENCES

Arnold, D.L., Bryce, F., Karpinski, K., Mes, J., Fernie, S., Tryphonas, H., Truelove, J., McGuire, P.F., Burns, D., Tanner, J.R., Stapley, R., Zawidzka, Z.Z., Basford, D., 1993. Toxicological consequences of Aroclor 1254 ingestion by female rhesus (macaca mulatta) monkeys. Part 1B. Prebreeding phase: Clinical and analytical laboratory findings.Food Chem. Toxicol., 31(11): 811-824.

Bhatt, K., Flora, S.J.S., 2009. Oral co-administration of α-lipoic acid, quercetin and captopril prevents gallium arsenide toxicity in rats. Environ. Toxicol. Pharmacol., 28(1): 140-146.

Bobadilla, M., Garcia-Sanmartin, J., Martinez, A., 2021. Natural Food Supplements Reduce Oxidative Stress in Primary Neurons and in the Mouse Brain, Suggesting Applications in the Prevention of Neurodegerative Duseases. Antioxidants (Basel.), 10(1): 46.

Bugianesi, R., Serafini, M., Simone, F., Wu, D., Meydani, S., Ferro-Luzzi, A., Azzini, E., Maiani, G., 2000. High-Performance Liquid Chromatography with Coulometric Electrode Array Detector for the Determination of Quercetin Levels in Cells of the Immune System. Analytical Biochem., 284(2): 296-300.

Chu, I., Pelletier, G., Masson, S., Wade, M.J., Nakai, J., Alwis, R., Mohottalage, S., Kumarathasan, P., Black, P., Bowers, W.J., Vincent, R., 2009. Contribution of methylmercury, polychlorinated biphenyls and organochlorine pesticides to the toxicity of a contaminant mixture based on Canadian Arctic population blood profiles. Toxicol. Lett., 184(3): 176-185.

David, A.V.A., Arulmoli, R., Parasuraman, S., 2016.  Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmcogn. Rev., 10(20): 84-89.

Engvall, E., Perlmann, P., 1971. Enzyme-linked immunosorbent assay (ELISA): quantitative assay of immunoglobulin G. Immunochem., 8: 871.

Engvall, E., 1977. Quantitative enzyme immunoassay (ELISA) in microbiology. Med. Biol., 55: 193.

Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem., 249: 7130-7139.

IOMC, Inter-Organization Programme for the Sound Management of Chemicals. Geneva, Switzerland: WHO. Persistent Organic Pollutants Assessment Report; 2002.

Kim, Y.A., Park, J.B., Woo, M.S., Lee, S.Y., Kim, H.Y., Yoo, Y.H., 2019. Persistent Organic Pollutant-Mediated Insulin Resistance. Int. Environ. Res. Public Health, 16(3): 448.

Kimbrough, R.D., Jensen, A.A., 2012. Halogenated Biphenyls, Terphenyls, Naphthalenes, Dibenzodioxins and Related Products. Elsevier, 24. 

Knerr, S., Schrenk, D., 2006. Carcinogenicity of non-dioxinlike polychlorinated biphenyls. Crit. Rev. Toxicol., 36(9): 663-94.

Kumar, J.S., Banudevi, S., Sharmila, M., Murugesan, P., Srinivasan, N., Balasubramanian, K., Aruldhas, M.M., Arunakaran, J., 2004. Effects of Vitamin C and E on PCB (Aroclor 1254) induced oxidative stress, androgen binding protein and lactate in rat Sertoli cells. Reprod. Toxicol., 19(2): 201-208.

Kunz, S., Schwarz, M., Schilling, B., Päpke, O., Lehmler, H.J., Robertson, L.W., Schrenk, D., Schmitz, H.J., 2005. Tumor promoting potency of PCBs 28 and 101 in rat liver. Toxicol. Lett., 164(2): 133-143.

Kutlu, S., Colakoglu, N., Halifeoglu, J., Sandal, S., Seyran, A.D., Aydin, M., Yılmaz, B., 2007. Comparative evaluation of hepatotoxic and Nephrotoxic effects of Aroclor 1221 and 1254 in female rats cell biochemistry and function. Cell Biochem. Funct., 25: 167–172.

Lorenzen, A., Moon, T.W., Kennedy, S.W., Fox, G.A., 1999.  Relationships between environmental organochlorine contaminant residues, plasma corticosterone concentrations, and intermediary metabolic enzyme activities in Great Lakes herring gull embryos. Environ. Health Perspect., 107: 179–186.

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the Folin Phenol Reagent. J. Biol. Chem., 193: 265-275.

Lugli, E., Ferraresi, R., Roat, E., Troiano, L., Pinti, M., Nasi, M., Nemes, E., Bertoncelli, L., Gibellini, L., Salomoni, P., Cooper, E.L., Cossarizza, A., 2009. Quercetin inhibits lymphocyte activation and proliferation without inducing apoptosis in peripheral mononuclear cells. Leukemia Res., 33(1): 140-150.

McCann, M.S., Fernandez, H.R., Flowers, S.A., Maguire-Zeiss, K.A., 2021. Polychlorinated biphenyls induce oxidative stress and metabolic responses in astrocytes. NeuroToxicol., 86: 59-68.

Mishra, H.P., Fridovich, I., 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biolog. Chem., 247: 3170-3175.

Morales, A..I, Vicente-Sa´nchez, C., Jerkic,  M., Santiago, J.M., Sa´nchez-Gonza´lez, P.D., Pe´rez-Barriocanal, F., Lo´pez-Novoa, J.M., 2005. Effect of quercetin on metallothionein, nitric oxide synthases andcyclooxygenase-2 expression on experimental chronic cadmiumnephrotoxicity in rats.  Toxicol. Appl. Pharmacol., 210: 128 – 135.

Moreira, A.J., Fraga, C., Alonso, M., Collado, P.S., Zetller, C., Marroni, C., Marroni, N., González-Gallego, J., 2004. Quercetin prevents oxidative stress and NF-κB activation in gastric mucosa of portal hypertensive rats. Biochem. Pharmacol., 68(10): 1939-1946.

Murugesan, P., Senthilkumar, J., Balasubramanian, K., Aruldhas, M.M., Arunakaran, J., 2005. Impact of polychlorinated biphenyl Aroclor 1254 on testicular antioxidant system in adult rats. Human Exp. Toxicol., 24: 61– 6.

Muthuvel, R., Venkataraman, P., Krishnamoorthy, G., Gunadharini, D.N., Kanagaraj, P., Jone Stanley, A., Srinivasan, N., Balasubramanian, K., Aruldhas, M.M., Arunakaran, J., 2005. Antioxidant effect of ascorbic acid on PCB (Aroclor 1254) induced oxidative stress in hypothalamus of albino rats. Clinica Chimica Acta, 365(1-2): 297-303.

Olayinka, E.T., Ore, A., Echebiri, R.C., 2015. Quercetin, a Flavonoid Antioxidant, Ameliorated Procarbazine-Induced Oxidative Damage to Murine Tissues. Antioxidants (Basel) 2015, 304-321.

Paglia, E., Valentine, N., 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Med., 70: 158-169.

Papiez, M.A., Cierniak, A., Krzysciak, W., Bzowska, M., Taha, H.M., Jozkowicz, A., Piskula, M., 2008. The changes of antioxidant defense system caused by quercetin administration do not lead to DNA damage and apoptosis in the spleen and bone marrow cells of rats. Food Chem. Toxicol., 46(9): 3053-3058. 

Rao, C.V., Vijayakumar, M., 2007. Effect of quercetin, flavonoids and α-tocopherol, an antioxidant vitamin on experimental reflux oesophagitis in rats. European J. Pharmacol., 589(1-3): 233-238.

Ross, P., Swart, R.D., Addison, R., Loveren, H.V., Vos, J., Osterhaus, A., 1996. Contaminant-induced immunotoxicity in harbour seals: Wildlife at risk? Toxicol., 112(2): 157-169.

Sinclair, P.R., Gorman, N., Walton, H.S., Sinclair, J.F., Lee, C.A., Rifkind, A.B., 1997. Identification of CYP1A5 as the CYP1A enzyme mainly responsible for uroporphyrinogen oxidation induced by AH receptor ligands in chicken liver and kidney. Drug Metab. Dispos., 25: 779–783.

Tappel, L., Zalkin, H., 1959. Inhibition of lipid peroxidation in mitochondria by vitamin E. Arch. Biochem. Biophys., 80: 333-336.  

Twaroski, T.P., O’Brien, M.L., Larmonier, N., Glauert, H.P., Rorbertson, L.W., 2001. Polychlorinated biphenyls-induced effects of metabolic enzymes, AP-1 binding, vitamin E, and oxidative stress in the rat liver. Toxicol. Appl. Pharmacol., 171: 85–93.

Vercelino, R., Tieppo, J., Cuevas, M.J., Tuñon, M.J., Marroni, N.P., Gonzalez-Gallego, J., 2009. Prevention of hepatopulmonary syndrome by quercetin adminstration in cirrhotic rats. J. Hepatol., 50(1): S282.

Venkataraman, P., Krishnamoorthy, G., Vengatesh, G., Srinivasan, N., Aruldhas, M.M., Arunakaran, J., 2008. Protective role of melatonin on PCB (Aroclor 1254) induced oxidative stress and changes in acetylcholine esterase and membrane bound ATPases in cerebellum, cerebral cortex and hippocampus of adult rat brain. Int. J. Dev. Neurosci., 26 (6): 585-591.

Wagnera, C., Fachinettoa, R., Cortea, C.L.D., Britoa, V.B., Severoa, D., Diasb, G.D.O.C., Morelb, A.F., Nogueiraa, C.W., Rochaa, J.B.T., 2006. Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res., 1107: 192 – 198.

Zeng, Y., Song, J., Zhang, M., Wang, H., Zhang, Y., Suo, H., 2020. Comparison of In vitro and In vivo Antioxidant Activities of Six Flavonoids with Similar Structures. Antioxidants, 9: 732.