Plants Defense System Resist against the Pathogen Attack: Transcription Factors in Focus

Author's: Mahpara Fatima,Safdar Abbas, Zaheer Ahmad, Yasir Sharif, Muhammad Umair,Khalida Bahadar,Madiha Zaynab
Corresponding Author: Madiha Zaynab      Email: madiha.zaynab14@gmail.com
Article Type: Mini-Review     Published: May. 08, 2018 Pages: 7-11
DOI:        Views 629       Downloads0

Abstract:

Transcription factors play important roles to drive different pathways by regulating gene expression. Apart from gene expression regulation, these TFs also have vital importance in plant immune system. Both PTI and ETI mode if immunity is important for plants but ETI has a central role in the defense system of a plant. ETI activates the hypersensitive response in which programmed/localized cell death is involved which ranked ETI quantitatively stronger than PTI which is effective in host resistance defense mechanism. Phytohormone such as salicylic acid, jasmonate, abscisic acid and ethylene and their components interact each other either positively or negatively. Their role in plant defense response has been documented.

Keywords:

Transcription factors, plant immune system, hypersensitive response.

Citation:

Fatima, M., Abbas, S., Ahmad, Z., Sharif, Y., Umair, M., Bahadar, K., Zaynab, M., 2018. Plants Defense System Resist against the Pathogen Attack: Transcription Factors in Focus. Int. J. Nanotechnol. Allied Sci., 2(1): 7-11.

REFERENCES

Balaji, V., Mayrose, M., Sherf, O., Jacob-Hirsch, J., Eichenlaub, R., Iraki, N., Manulis-Sasson, S., Rechavi, G., Barash, I., Sessa, G., 2008. Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol., 146(4): 1797-1809.

Boller, T., Felix, G.A., 2009. Renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol., 60: 379–406.

Buscaill, P., Rivas, S., 2014. Transcriptional control of plant defence responses. Curr. Opin. Plant Biol., 20: 35-46.

Carretero-Paulet, L., Galstyan, A., Roig-Villanova, I., Martínez-García, J.F., Bilbao-Castro, J.R., Robertson, D.L., 2010. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol., 153(3): 1398-412.

Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J.M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F.M., Ponce, M.R., Micol, J.L, Solano, R., 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature., 448(7154): 666-671.

Choi, J., Hwang, I., 2007 Cytokinin: perception, signal transduction, and role in plant growth and development. J. Plant Biol., 50: 98–108.

Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., Lepiniec, L., 2010. MYB transcription factors in Arabidopsis. Trends Plant Sci., 15: 573–581.

Falcioni, T., Ferrio, J.P., del Cueto, A.I., Giné, J., Achón, M.Á., 2013. Medina, V. Effect of salicylic acid treatment on tomato plant physiology and tolerance to potato virus X infection. Eur. J. Plant Pathol., 138(2): 331-345.

Fonseca, S., Chico, J.M., Solano, R., 2009. The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr. Opin. Plant Biol., 12(5): 539-547.

Fonseca, S., Fernández-Calvo, P., Fernández, G.M., Díez-Díaz, M., Gimenez-Ibanez, S., López-Vidriero, I., Godoy, M., Fernández-Barbero, G., Van Leene, J., De Jaeger, G., Franco-Zorrilla, J.M., Solano, R., 2014. bHLH003, bHLH013 and bHLH017 Are New Targets of JAZ Repressors Negatively Regulating JA Responses. PLoS ONE., 9(1): e86182.

Fudali, S.L., Wang, C., Williamson, V.M., 2013. Ethylene signalling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla. Mol. Plant-Microbe Interact., 26(1): 75-86.

Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., Ryals, J., 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Sci., 261(5122): 754-756.

Gatz, C., 2013. From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol. Plant Microbe Interact., 26(2): 151-9.

Iqbal, M.N., Ashraf, A., 2017. Antagonism in Rhizobacteria: Application for Biocontrol of Soil-borne Plant Pathogens. PSM Microbiol., 2(3): 78-79.

Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., Parcy, F., 2002. bZIP Research Group. 2002. bZIP transcription factors in Arabidopsis. Trends Plant Sci., 7(3): 106-111.

Jensen, M.K., Hagedorn, P.H., de Torres-Zabala, M., Grant, M.R., Rung, J.H., Collinge, D.B, Lyngkjaer, M.F., 2008. Transcriptional regulation by an NAC (NAMATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis in Arabidopsis. Plant J., 56: 867–880.

Jones, J.D., Dangl, J.L., 2006. The plant immune system. Nature., 444: 323–329.

Jung, H.W., Tschaplinski, T.J., Wang, L., Glazebrook, J., Greenberg, J.T., 2009. Priming in systemic plant immunity. Sci., 324(5923): 89-91.

Kim, H.J., Ryu, H., Hong, S.H., Woo, H.R., Lim, P.O., Lee, I.C., Sheen, J., Nam, H.G., Hwang, I., 2006. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc. Natl. Acad. Sci. USA., 103(3):814-9.

Lawton, K., Weymann, K., Friedrich, L., Vernooij, B., Uknes, S., Ryals, J., 1995. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. MPMI., 8(6): 863-870.

Macho, A.P., Zipfel, C., 2014. Plant PRRs and the activation of innate immune signaling. Mol. Cell., 54(2): 263-72.

Mantelin, S., Bhattarai, K.K., Kaloshian, I., 2009. Ethylene contributes to potato aphid susceptibility in a compatible tomato host. New Phytol.,183(2): 444-456.

Matsumoto-Kitano, M., Kusumoto, T., Tarkowski, P., Kinoshita-Tsujimura, K., Václavíková, K., Miyawaki, K., Kakimoto, T., 2008. Cytokinins are central regulators of cambial activity. Proc. Natl. Acad. Sci. USA., 105: 20027–20031.

Metraux, J.P., Signer, H., Ryals, J., Ward, E., Wyssbenz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., Inverardi, B., 1990. Increase in salicylic-acid at the onset of systemic acquired resistance in cucumber. Sci., 250(4983): 1004-1006.

Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K., 2012. NAC transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta., 1819: 97–103.

Nuruzzaman, M., Sharoni, A.M., Kikuchi, S., 2013. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol., 4: 248.

Pandey, S.P., Somssich, I.E., 2009. The role of WRKY transcription factors in plant immunity. Plant Physiol., 150(4): 1648-55.

Pauwels, L., Barbero, G.F., Geerinck, J., Tilleman, S., Grunewald, W., Pérez, A.C., Chico, J.M., Bossche, R.V., Sewell, J., Gil, E., García-Casado, G., Witters, E., Inzé, D., Long, J.A., De Jaeger, G., Solano, R., Goossens, A., 2010. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature., 464(7289): 788-791.

Pieterse, C.M., Van der Does, D., Zamioudis, C., Leon-Reyes, A., Van Wees, S.C., 2012. Hormonal modulation of plant immunity. Ann. Rev. Cell Dev. Biol., 28: 489–521.

Rivero, R.M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., Blumwald, E., 2007. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. U.S.A. 104: 19631–19636.

Robert-Seilaniantz, A., Navarro, L., Bari, R., Jones, J.D., 2007. Pathological hormone imbalances. Curr. Opin. Plant Biol., 10: 372–379

Rushton, P.J., Somssich, I.E., Ringler, P., Shen, Q.J., 2010. WRKY transcription factors. Trends Plant Sci., 15(5): 247-58.

Spoel, S.H., Dong, X., 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol., 12(2):89-100.

Stracke, R., Werber, M., Weisshaar, B., 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol., 4: 447–456.

Tsuda, K., Somssich, I.E., 2015. Transcriptional networks in plant immunity. New Phytol., 206(3): 932-947.

Vlot, A.C., Dempsey, D.M.A., Klessig, D.F., 2009. Salicylic acid, a multifaceted hormone to combat disease. Ann. Rev. Phytopathol., 47: 177-206.

Wang, K.L.C., Li, H., Ecker, J.R., 2002. Ethylene biosynthesis and signaling networks. Plant Cell., 14 Suppl, S131-S151.

Wubben, M.J.E., Su, H., Rodermel, S.R., Baum, T.J., 2002. Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana. Mol. Plant-Microbe Interact., 14(10): 1206-1212.

Zander, M., Thurow, C., Gatz, C., 2014. TGA Transcription Factors Activate the Salicylic Acid-Suppressible Branch of the Ethylene-Induced Defense Program by Regulating ORA59 Expression. Plant Physiol., 165(4): 1671–1683.

Zebell, S.G., Dong, X., 2015. Cell-Cycle Regulators and Cell Death in Immunity. Cell Host Microbe., 18(4): 402-407.

Zhao, Z., Andersen, S.U., Ljung, K., Dolezal, K., Miotk, A., Schultheiss, S.J., Lohmann, J.U., 2010. Hormonal control of the shoot stem-cell niche. Nature., 465: 1089–1092.