Larvicidal Efficacy of Aqueous Extracts of Citrus grandis (Grapefruit) against Culex Larvae

Author's: Ghazal Ishtiaq, Rabia Sheikh, Arif Mehmood Siddiqui, Imtiaz Farid
Authors' Affiliations
Article Type: Research Article     Published: Mar. 31, 2019 Pages: 7-16
DOI:        Views 1784       Downloads 0


Mosquitoes serve as vector for various tropical and subtropical diseases which cause destructive effects to humans. Development of resistance to insecticides and wide spread environmental pollution necessitate a continued search for alternative pest control as well as vector control strategies. The present study was undertaken to evaluate the larvicidal activity of various extracts of boiled and unboiled leaves of Citrus grandis against Culex quinquefasciatus. Various concentrations (20 mg/200ml, 40 mg/200ml and 60 mg/200ml) of the Citrus grandis extracts were tested against fourth instar larvae of Culex quinquefasciatus. The larval mortality was observed after each 24 h of exposure. All the extracts showed significant larvicidal activity against Culex mosquito at 0.05 level of significance (p<0.05) however, the highest larval mortality was found in 30% boiled extract of leaves as it took least time (5 days) to give 97% mortality. The results indicated that the aqueous leaf extract of Citrus grandis is effective against Culex quinquefasciatus mosquito larvae and need to be explored for its possible use in the control of mosquito population.


Larvicidal activity, resistance to insecticides, control of mosquito population.


Ishtiaq, G., Sheikh, R., Siddiqui, M.A., Farid, I., 2019. Larvicidal Efficacy of Aqueous Extracts of Citrus grandis (Grapefruit) against Culex Larvae. PSM Microbiol., 4(1): 7-16.


Akram, W., Khan, H.A.A., Hafeez, F., Bilal, H., Kim, Y.K., Lee, J.J., 2010. Potential of Citrus Seed Extracts against Dengue Fever Mosquito, Aedes alpobictus (CULICIDAE: DIPTERA). Pak. J. Bot. 42(4): 3343-3348.

Ali, K., Shuaib, M., Ilyas, M., Hussain, F., Hussain, F., 2017. Medicinal Uses of Chemical Extracts from Withania somnifera and Its Antimicrobial Activity: A Mini-Review. PSM. Microbiol., 2(1): 20-23.

Azmathullah, N., Sheriff, A.M., Mohideen, S.A.K., 2011. Phytochemical screening of Calotropis procera flower extracts and their bio-control potential on Culex sp. mosquito larvae and pupae. Int. J.  Pharm. Biol. Arch., 2(6): 1718-1721.

Barr, A.R., 1957. The distribution of Culex quinquefasciatus and Culex pipiens in North America. Am. J. Tropical Med. Hyg., 6(1): 153-165.

Gerberg, E.J., Barnard, D.R., Ward, R.A., 1994. Manual for Mosquito Rearing and Experimental Techniques. American Mosquito Control Association Bulletin NO. 5, 61-62.

Howard, A.F., Zhou, G., Omlin, F.X., 2007. Malaria mosquito control using edible fish in western Kenya: preliminary findings of a controlled study. BMC Public Health., 7: 199.

Hussain, F., Kalim, M., Ali, H., Ali, T., Khan, M., Xiao, S., Iqbal, M.N., Ashraf, A., 2016. Antibacterial Activities of Methanolic Extracts of Datura inoxia. PSM Microbiol., 01(1): 33-35.

Iqbal, M.N, Ashraf, A., 2018. Recombinant Protein Production in Plants: Biofactories for Therapeutics. Int. J. Mol. Microbiol., 1(1): 38-39.

Iqbal, M.N, Ashraf, A., 2019. Withania somnifera: Can it be a Therapeutic Alternative for Microbial Diseases in an Era of Progressive Antibiotic Resist- ance? Int. J. Nanotechnol. Allied Sci., 3(1): 16-18.

Iqbal, M.N., Anjum, A.A., Ali, M.A., Hussain, F., Ali, S., Muhammad, A., Irfan, M., Ahmad, A., Irfan, M., Shabbir, A., 2015. Assessment of microbial load of un-pasteurized fruit juices and in vitro antibacterial potential of honey against bacterial isolates. Open Microbiol. J., 9: 26-32.

Jang, Y.S., Kim, M.K., Ahn, Y.J., Lee, H.S.,  2002. Larvicidal activity of Brazilian plants against Aedes Aegypti and Culex pipens pallens ( Diptera:Culicidae) Agric. Chem. Biotechnol., 45(3): 131-134.

Kalim, M., Hussain, F., Ali, H., Iqbal, M.N., 2016. Antifungal activities of Methanolic Extracts of Datura inoxia. PSM Biol. Res., 01(2): 70-73.

Kalyanasundaram, M., Das, P.K., 1985. Larvicidal and synergistic activity of plant extracts for mosquito control. Ind. J. Med. Res., 82: 19-23.

Khan, Y.S., 2009. Response of Culex quinquefasciatus to deltamethrin in Lahore District, J. Parasitol. Vector Biol., 1(3): 19-24.

Liu, Y., Liu, D.C., Wu, B., Sun, Z.H., 1990. Genetic diversity of pummeloo (Citrus  grandis Osbeck) and its relatives based on simple sequencerepeat markers. Chinese J. Agric. Biotechnol., 3(2): 119-126.

Mohan, L., Sharma, P., Srivastava, C.N., 2005. Evaluation of Solanum xanthocarpum extracts as mosquito larvicides. J. Environ. Biol., 26(2): 399-401.

Reiter, P., 2001. Vecrot-born diseases and global warming. Environ. Health Perspect., 109 (Suppl 1): 141-61.

Robert, S.H., 2001. Discover a native plant extract that repels and kill termites. J. Econ. Entomol., 9: 1200-1208.

Sattar, M., Iqbal, M.N., Ashraf, A., Ali, S., Shahzad, M.I., Alam, S., Ali, T., Sheikh, R., 2016. Larvicidal Efficacy of Citrus sinensis Extracts against Culex quinquefasciatus. PSM Microbiol., 01(2): 56-61.

Sarwar, M., Ahmad, N., Toufiq, M., 2009. Host plant resistance relationshiphs in chickpea (Cicer arietinum L.) against gram pod borer (Helicoverpa armigeraHubner). Pak. J. Bot., 41(6): 3047-3052.

Service, M.W., 1983. Management of vectors. In: Pest and vectors management in Tropics, (Eds.): A. Youdeowei and M.W. Service. 5: 265-280.

Shahzad, M.I., Ashraf, H., Iqbal, M.N., Khanum, A., 2017. Medicinal Evaluation of Common Plants against Mouth Microflora. PSM Microbiol., 2(2): 34-40.

Shuaib, M., Ali, S., Ali, K., Hussain, F., Ilyas, M., Arif, M., Hussain, F., 2019. Validation of the Ethnopharmacological Uses of Withania somnifera. Int. J. Nanotechnol. Allied Sci., 3(1): 1-6.

Singh, N., Hoette, Y., Miller, R., 2010. Tulsi ‘The Mother Medicine of.  Nature’ 2nd Edition.  International Institute of Herbal Medicine, Lucknow. 2, 28-47.

Sukumar, K., Perich, M.J., Boobar, L.R., 1991.  Botanical derivatives in mosquito control: A review J. Am. Mosquito Assoc., 7(2):  210-237.

Tripathi,  A.K.,  Prajapati, V., Khanuja, S.P.S., 2003. Herbal synergistic formulation effective against mosquito larvae and use thereof  in controlling malaria vector. J. Sci. Technol., 63: 67-74.

Ubulom, P.M. E., Imandeh, G.N., Ettebong, E. O.  Udobi, C.E., 2012. Potential larvicidal properties of Blighia sapida leaf extracts against larvae of An.  gambiaeCu.  quinquefasciatus and Ae.  aegypti. Br. J. Pharm. Res., 2(4): 259-268.

Ullah, M., Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Farooq, T.H., Zaffar, M.H., Ullah, R., Khan, S. U., Hussain, W., Ullah, I., Shaheen, S.,  Ali,  M., 2018. Plants as Antidiabetic Agents: Traditional Knowledge to Pharmacological Validation. PSM Biol. Res., 3(3): 111-119.

Walker, K.R., Ricciardone, M.D., Jensen, J., 2002. Developing an international consensus on DDT: a balance of environmental protection and disease control. Int. J. Hyg. Environ. Health., 206: 423-435.

WHO. (World Health Organization), 2010. Lymphatic filariasis.

Yildirim, E., Aslan, A., Emsen, B., Cakir, A., Ercisli, S., 2012. Insecticidal effect of Usnea longissima (Parmeliaceae) extracts against Sitophilus granarius (Coleoptera: Curculionidea). Int. J. Agric. Biol., 14: 303-306.

Zhu, J., Zeng, X., Yanma, Liu, T., Qian, K., Han, Y., Xue, S., Tucker, B., Schultz, G., Coats, J., Rowley, W., Zhang, A., 2006. Adult repellency and larvicidal activity of five plant essential oils against mosquitoes. J. Am. Mosq. Contr. Assoc., 22(3): 515-522.

Zhu, J., Zeng, X., O’neal, M., Schultz, G., Tucker, B., Coats, J., 2008. Mosquito larvicidal activity of botanical-based mosquito repellents. J. Am. Mosq. Contr. Assoc., 24: 161-168.