Drought Effect and Tolerance Potential of Wheat: A Mini-Review

Author's: Mahpara Fatima, Zaheer Ahmed, Mehtab Aslam, Madiha Zaynab
Authors' Affiliations
Article Type: Mini-Review     Published: Oct. 15, 2018 Pages: 16-21
DOI:        Views 904       Downloads0


Water is a severe environmental constraint to plant productivity. Drought-induced loss in crop yield probably exceeds losses from all other causes, since both the severity and duration of the stress are critical. Drought affect is noticeable at all level of organization from cellular to whole plant level. Manifestation of combination of morpho-physiological changes decides the ability of plant to overcome limited water supply and sustain its growth. Plant drought tolerance does not remain same at all stages of wheat development due to the variable responses. Therefore, it is important to develop relationship between drought and yield traits at different stages of wheat development. Drought at booting or flowering stage of wheat development shows strong relationship with grain yield. While seedling growth shows higher correlation with drought tolerance in wheat under drought field condition. Relative yield for comparison of different genotypes made good indicator of tolerance potential.


Drought tolerance, genotypes, grain, tolerance.


Fatima, M., Ahmed, Z., Aslam, M., Zaynab, M., 2018. Drought Effect and Tolerance Potential of Wheat: A Mini-Review. Int. J. Nanotechnol. Allied Sci., 2(2): 16-21.


Allen, D.J., Ort, D.R., 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci., 6(1): 36-42.

Arjenaki, F.G., Jabbari, R., Morshedi, A., 2012. Evaluation of Drought Stress on Relative Water Content, Chlorophyll Content and Mineral Elements of Wheat (Triticum aestivum L.) varieties. Int. J. Agric. Crop Sci., 4(11): 726-729.

Arshad, I., Ali, W., Khan, Z.A., Bhayo, W.A., 2016. Effect of Water Stress on the Growth and Yield of Rhodes Grass (Chloris gayana. L. Kunth.). PSM Biol. Res., 01(2): 58-61.

Arshad, I., 2017. Effect of Water Stress on the Growth and Yield of Greenhouse Cucumber (Cucumis sativus L.). PSM Biol. Res., 2(2): 63-67.

Arshad, I., Irfan, M., Khan, Z.A., Nindwani, B.A., 2017. Effеct of Watеr Strеss on the Growth and Yield of Sweet Pepper (Capsicum annumL.) undеr Grееnhousе Conditions. PSM Biol. Res., 2(3): 137-141.

Bilal, M., Iqbal, I., Rana R.M., Rehman, S., Haidery, Q-ulA., Ahmad, F., Ijaz, A., Umar, H.M.I., 2015. A comprehensive review of effects of water stress and tolerance in wheat (Triticuma estivum L.). Plant Trop. Res., 2(3): 271–275.

Chaves, M., Davies, B., 2010. Drought effects and water use efficiency: improving crop production in dry environments. Funct. Plant Biol., doi: 10.1071/FPv37n2_FO

Flowers, T.J., Flowers, S.A., 2005. Why does salinity pose such a difficult problem for plant breeders? In: Agric. Water Manage., 78: 15-24.

Hall, A.E., 2001. Crop Responses to Environment. CRC press.

Hameed, A., Goher, M., Iqbal, N., 2014. Biochemical indices of drought tolerance in wheat (Triticum aestivum L.) at early seedling stage. Philipp. Agric. Sci., 97(3):236-242.

Innes, P., Blackwell, R.D., Quarrie, S.A., 1984. Some effects of genetic variation in drought-induced abscisic acid accumulation on the yield and water use of spring wheat. J. Agric. Sci., doi: 10.1017/S0021859600042660

Jones, H.G., 1993. Drought tolerance and water-use efficiency. Water deficits plant responses from cell to community. (ed. by J.A.C. Smith, H. Griffiths). pp. 193-203. BIOS Sci. Ltd. Oxford.

Khakwani, A.A., Dennett, M.D., Munir, M., Baloch, M.S., 2012. Wheat yield response to physiological limitations
under water stress condition. J. Anim. Plant Sci., 22(3): 773-780.

Khan, J., Khan, S., Khetran, M.A., Amanullah, Sadiq, N., Islam, M., Hanan, A., Aziz, A., 2013. Tijaban-10 a drought tolerant and high yielding wheat variety for rainfed/sailaba areas of balochistan. Pak. J. Bot., 45(4): 1357-1362.

Ludlow, M.M., Muchow, R.C., 1990. A Critical Evaluation of Traits for Improving Crop Yields in Water-Limited
Environments. Adv. Agron., doi: 10.1016/S0065-2113(08)60477-0

Maldonado, C.A., Zuñiga, G.E., Corcuera, L.J., Alberdi, M., 1997. Effect of water stress on frost resistance of oat leaves. Environ. Exp. Bot., doi: 10.1016/S0098-8472(96)01045-3

Munns, R., James, R.A., Läuchli, A., 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot., 57(5):1025-43.

Nam, N.H., Subbarao, G.V., Chauhan, Y.S., Johansen, C., 1998. Importance of canopy attributes in determining dry matter accumulation of pigeon pea under contrasting moisture regimes. Crop Sci., doi: 10.2135/cropsci1998.0011183X003800040013x

Nonami, H., 1998. Plant water relations and control of cell elongation at low water potentials. J. Plant Res., doi: 10.1007/BF02507801

Osborne, S.L., Schepers, J.S., Francis, D.D., Schlemmer, M.R., 2002. Use of spectral radiance to estimate inseason biomass and grain yield in nitrogen- and waterstressed corn. Crop Sci. doi: 10.2135/cropsci2002.0165

Oyiga, B.C., Sharma, R.C., Shen, J., et al. 2016. Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J. Agron. Crop Sci., doi: 10.1111/jac.12178

Peymaninia, Y., Valizadeh, M., Shahryari, R., Ahmadizadeh, M., 2012. Evaluation of morpho-physiological responses of wheat genotypes against drought stress in presence of a leonardite derived humic fertilizer under greenhouse condition. J. Anim. Plant Sci., 22(4): 1142-1149.

Reynolds, M.P., Mujeeb-Kazi, A., Sawkins, M., 2005. Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought- and salinityprone environments. Ann. Appl. Biol., doi: 10.1111/j.17447348.2005.040058.x

Richards, R., Rawson, H., Johnson, D., 1986. Glaucousness in Wheat: Its Development and Effect on Water-use Efficiency, Gas Exchange and Photosynthetic Tissue Temperatures. Aust. J. Plant Physiol., doi: 10.1071/PP9860465

Rucker, K.S., Kvien, C.K., Holbrook, C.C., Hook, J.E., 1995. Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci. doi: 10.3146/i0095-3679-22-1-3

Sangtarash, M.H., 2010. Responses of Different Wheat Genotypes to Drought Stress Applied at Different Growth Stages. Pak. J. Biol. Sci., 13: 114-119.

Shah, N.H., Arshad, I., Khan, Z.A., 2018. Effеct of Different Levels of Water Stress on the Growth and Yield of Mango (Mangifera indica L.) by Using Drip Irrigation Technology. Int. J. Altern. Fuels. Energy., 2(2): 34-38.

Siddique, K.H.M., Regan, K.L., Tennant, D., Thomson, B.D., 2001. Water use and water use efficiency of cool season grain legumes in low rainfall Mediterraneantype environments. Eur. J. Agron., doi: 10.1016/S1161-0301(01)00106-X

Storey, R., Jones, R.G.W., 1977. Quaternary ammonium compounds in plants in relation to salt resistance. Phytochem., doi: 10.1016/S0031-9422(00)94326-7

Turner, N.C., Wright, G.C., Siddique, K.H.M., 2001. Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron., doi: 10.1016/S0065-2113(01)71015-2

Yadav, R.S., Hash, C.T., Bidinger, F.R., et al 2004. Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica. doi:

Yousaf, M.S., Farooq, T.H., Ahmad, I., Gilani, M.M., Rashid, M.H., Gautam, N.P., Islam, W., Asif, M., Wu, P., 2018. Effect of Drought Stress on the Growth and Morphological Traits of Eucalyptus camaldulensis
and Eucalyptus citriodora
. PSM Biol. Res., 3(3): 85-91.

Related Content