Antioxidant Capacity of In-vitro generated Solanum tuberosum L. Cultivar (Favorita)

Author's: Mehtab Muhammad Aslam, Karanja J. K., Suleiman Kehinde Bello, Madiha Zaynab, Mahpara Fatima, Junaite Bin Gias Uddin
Authors' Affiliations
Article Type: Research Articles     Published: May. 20, 2019 Pages: 19-29
DOI:        Views 1197       Downloads 0


Plant-based diets are rich in antioxidants that scavenge harmful free radicals in order to reduce the risk of the development of oxidative stress-related diseases. Solanum tuberosum L. is endowed with a high content of antioxidants including phenolic acids and flavonoids, however, concentrations of these secondary metabolites in cultivars such as Favorita remain largely undefined. Thus, the total phenolic contents of Favorita were analyzed using HPLC, while percentage inhibition of DPPH and ABTS assays were performed to determine antioxidant activities. The major constituents of phenolic acid in the potato root methanol extract were vanillic acid and chlorogenic acid. Similarly, antioxidant activity ranged from 5.7% (% inhibition of DPPH) to 69.85% (% inhibition of ABTS) in comparison to the three available standards. Total phenolic content and antioxidant capacity revealed a significantly high linear correlation (R2 = 0.951, P = 0.01), suggesting a direct involvement of phenolics in the antiradical activity. These results demonstrate that Favorita contains potent antioxidant capacity; however, this potency is dependent on the specific free radicals utilized. These findings would facilitate future research on potato micropropagation for improved agronomic traits as well as give information on its nutritional use as an antioxidant.


Antioxidants capacity; Solanum tuberosum L. (Favorita); ABTS; DPPH; Total phenolic content; HPLC.


Aslam, M.A., Karanja, J.K., Bello, S.K., Zaynab, M., Fatima, M., Uddin, J.B.G., 2019. Antioxidant Capacity of In-vitro generated Solanum tuberosum L. Cultivar (Favorita). Int. J. Nanotechnol. Allied Sci., 3(1): 19-29.


Aebi, H., 1974. Catalases. Methods of enzymatic analysis, 2: 673-684.

Afify, A.E.-M.M., El-Beltagi, H.S., Aly, A.A., El-Ansary, A.E., 2012. Antioxidant enzyme activities and lipid peroxidation as biomarker compounds for potato tuber stored by gamma radiation. Asian Pac. J. Trop. Med., 2(3): S1548-S1555.

Ah-Hen, K., Fuenzalida, C., Hess, S., Contreras, A., Vega-Gálvez, A., Lemus-Mondaca, R., 2012. Antioxidant capacity and total phenolic compounds of twelve selected potato landrace clones grown in Southernchile. Chil. J. Agric. Res., 72(1): 3.

Ahmad, P., Ozturk, M., Gucel, S., 2012. Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard (Brassica juncea L.) plants. Fresenius Environ. Bull., 21: 2953-2961.

Al-Deen, A.T., Al-Jobory, H.J., 2018. Native Yemeni Plumbago auriculata as a Promising Antioxidant and Antifungal Plant against Different Fusarium species. PSM Biol. Res., 3(3): 92-98.

Al-Weshahy, A., Rao, A.V., 2009. Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Res. Int., 42(8): 1062-1066.

Albishi, T., John, J.A., Al-Khalifa, A.S., Shahidi, F., 2013. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J. Funct. Food., 5(2): 590-600.

Ali, K., Shuaib, M., Ilyas, M., Hussain, F., Hussain, F., 2017. Medicinal Uses of Chemical Extracts from Withania somnifera and Its Antimicrobial Activity: A Mini-Review. PSM Microbiol., 2(1): 20-23.

Alkhatib, A. J., 2018. Crude Extract of Potato Ameliorates Clinical Impacts of Infection with Helicobacter pylori: Case Study. PSM Microbiol. 3(2): 64-66.

Amarowicz, R., Pegg, R., Rahimi-Moghaddam, P., Barl, B., Weil, J., 2004. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem., 84(4): 551-562.

Amin, R.A., Edris, S.N., 2017. Grape Seed Extract as Natural Antioxidant and Antibacterial in Minced Beef. PSM Biol. Res., 2(2): 89-96.

Andre, C.M., Oufir, M., Guignard, C., Hoffmann, L., Hausman, J.-F., Evers, D., Larondelle, Y., 2007. Antioxidant profiling of native Andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of β-carotene, α-tocopherol, chlorogenic acid, and petanin. J. Agric. Food Chem., 55(26): 10839-10849.

Badoni, A., Chauhan, J., 2009. Effect of growth regulators on meristem-tip development and in vitro multiplication of potato cultivar Kufri Himalini. Nat. Sci., 7(9): 31-34.

Barański, M., Średnicka-Tober, D., Volakakis, N., Seal, C., Sanderson, R., Stewart, G.B., Benbrook, C., Biavati, B., Markellou, E., Giotis, C., 2014. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br. J. Nutr., 112(5): 794-811.

Barrell, P.J., Meiyalaghan, S., Jacobs, J.M., Conner, A.J., 2013. Applications of biotechnology and genomics in potato improvement. Plant Biotechnol. J., 11(8): 907-920.

Bartwal, A., Mall, R., Lohani, P., Guru, S., Arora, S., 2013. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J. Plant Growth Regul., 32(1): 216-232.

Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O., 2012. Oxidative stress and antioxidant defense. World Allergy Organ. J., 5(1): 9.

Camire, M.E., Kubow, S., Donnelly, D.J., 2009. Potatoes and human health Crit. Rev. Food Sci. Nutr., 49(10): 823-840.

Delaplace, P., Fauconnier, M.-L., Sergeant, K., Dierick, J.-F., Oufir, M., Van der Wal, F., America, A.H., Renaut, J., Hausman, J.-F., Du Jardin, P., 2009. Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern. J. Exp. Bot., 60(4): 1273-1288.

Deußer, H., Guignard, C., Hoffmann, L., Evers, D., 2012. Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. J. Food Chem., 135(4): 2814-2824.

Doliński, R., Olek, A., 2013. Micropropagation of sweet potato (Ipomoea batatas L.) from node explants. Acta. Sci. Pol-Hortoru., 12: 117-127.

Dowling, P., 2004. Mustard monuments and media: A pastiche. Working paper based on ‘Who Will Pay the HyperPiper’presentation at the Media Research Centre, Yonsei University, Seoul (2003). http://homepage. mac. com/paulcdowling/ioe/publications/mmm/index. htm.

Działo, M., Mierziak, J., Korzun, U., Preisner, M., Szopa, J., Kulma, A., 2016. The potential of plant phenolics in prevention and therapy of skin disorders Int. J. Mol. Sci., 17(2): 160.

Engreitz, J.M., Pandya-Jones, A., McDonel, P., Shishkin, A., Sirokman, K., Surka, C., Kadri, S., Xing, J., Goren, A., Lander, E.S., 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Sci., 341(6147): 1237973.

Fang, Y.-Z., Yang, S., Wu, G., 2002. Free radicals, antioxidants, and nutrition. Nutrition., 18(10): 872-879.

Felcher, K.J., Coombs, J.J., Massa, A.N., Hansey, C.N., Hamilton, J.P., Veilleux, R.E., Buell, C.R., Douches, D.S., 2012. Integration of two diploid potato linkage maps with the potato genome sequence. PloS One., 7(4): e36347.

Fridovich, I., 1999. Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen?, Ann. N. Y. Acad. Sci., 893(1): 13-18.

Grassmann, J., 2005. Terpenoids as plant antioxidants. J. Vitam. Horm., 72: 505-535.

Hanif, H.A., Murad, N.A., Ngah, W.Z.W., Yusof, Y.A.M., 2005. Effects of zingiber officinale on superoxide dismutase, glutathione peroxidase, catalase, glutathione and malondialdehyde content in HepG2 cell line. Malays. J. Biochem. Mol. Biol., 11: 36-41.

Hashmi, I.H., Aslam, A., Farooq, T.H., Zaynab, M., Munir, N., Tayyab, M., Abbasi, K.Y., 2018. Antifungal Activity of Biocontrol Agents against Corm Rot of Gladiolus grandiflorus L. Caused by Fusarium oxysporum. Int. J. Mol. Microbiol., 1(1): 29-37.

Huang, Z., Wang, B., Eaves, D.H., Shikany, J.M., Pace, R.D., 2007. Phenolic compound profile of selected vegetables frequently consumed by African Americans in the southeast United States. Food Chem., 103(4): 1395-1402.

Hussain, F., Kalim, M., Ali, H., Ali, T., Khan, M., Xiao, S., Iqbal, M.N., Ashraf, A., 2016. Antibacterial Activities of Methanolic Extracts of Datura inoxia. PSM Microbiol., 01(1): 33-35.

Hussain, A., Qarshi, I.A., Nazir, H., Ullah, I., 2012. Plant tissue culture: Current status and opportunities, Recent advances in plant in vitro culture. InTechOpen., Doi: 10.5772/50568.

Iqbal, M.N., Anjum, A.A., Ali, M.A., Hussain, F., Ali, S., Muhammad, A., Irfan, M., Ahmad, A., Irfan, M., Shabbir, A., 2015. Assessment of microbial load of un-pasteurized fruit juices and in vitro antibacterial potential of honey against bacterial isolates. Open Microbiol. J., 9: 26-32.

Islam, M.S., Yoshimoto, M., Yahara, S., Okuno, S., Ishiguro, K., Yamakawa, O., 2002. Identification and characterization of foliar polyphenolic composition in sweetpotato (Ipomoea batatas L.) genotypes. J. Agric. Food Chem., 50(13): 3718-3722.

Kakkar, V., Spindler, J., Flute, P., Corrigan, T., Fossard, D., Crellin, R., Wessler, S., Yin, E., 1972. Efficacy of low doses of heparin in prevention of deep-vein thrombosis after major surgery: a double-blind, randomised trial. Lancet., 300(7768): 101-106.

Kalim, M., Hussain, F., Ali, H., Iqbal, M.N., 2016. Antifungal activities of Methanolic Extracts of Datura inoxia. PSM Biol. Res., 01(2): 70-73.

Kanatt, S.R., Chander, R., Radhakrishna, P., Sharma, A., 2005. Potato peel extract a natural antioxidant for retarding lipid peroxidation in radiation processed lamb meat. J. Agric. Food Chem., 53(5): 1499-1504.

Kaspar, K.L., Park, J.S., Brown, C.R., Mathison, B.D., Navarre, D.A., Chew, B.P., 2011. Pigmented potato consumption alters  oxidative stress and inflammatory damage in men. J. Nutr., 141: 108–111.

Lachman, J., Hamouz, K., Orsák, M., Pivec, V., Dvořák, P., 2008. The influence of flesh colour and growing locality on polyphenolic content and antioxidant activity in potatoes. Sci. Hort., 117(2): 109-114.

Lachman, J., Hamouz, K., Šulc, M., Orsák, M., Pivec, V., Hejtmánková, A., Dvořák, P., Čepl, J., 2009. Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chem., 114(3): 836-843.

Leo, L., Leone, A., Longo, C., Lombardi, D.A., Raimo, F., Zacheo, G., 2008. Antioxidant compounds and antioxidant activity in “early potatoes”. J. Agric. Food Chem., 56(11): 4154-4163.

Mattila, P., Kumpulainen, J., 2002. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem., 50(13): 3660-3667.

Mouffouk, C., Mouffouk, S., Dekkiche, S., Hambaba, L., Mouffouk, S., 2019. Antioxidant and Antibacterial Activities of the species Silene inflata Sm. PSM Biol. Res., 4(2): 74-86.

Navarre, D.A., Pillai, S.S., Shakya, R., Holden, M.J., 2011. HPLC profiling of phenolics in diverse potato genotypes. Food     Chem., 127(1): 34-41.

Padda, M.S., Picha, D., 2007. Antioxidant activity and phenolic composition in ‘Beauregard’sweetpotato are affected by root size and leaf age. J. Am. Soc. Hortic. Sci., 132(4): 447-451.

Pandey, N., Pandey-Rai, S., 2015. 10 Biochemical Activity and Therapeutic Role of Antioxidants in Plants and Humans. Antioxid Redox. Signal., 6(5): 841-849.

Pandya-Jones, A., Bhatt, D.M., Lin, C.-H., Tong, A.-J., Smale, S.T., Black, D.L., 2013. Splicing kinetics and transcript release from the chromatin compartment limit the rate of Lipid A-induced gene expression. RNA., 19(6): 811-27. doi: 10.1261/rna.039081.113.

Rahman, I., Kode, A., Biswas, S.K., 2006. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc., 1(6): 3159-65.

Roy, T., Baque, M., Chakraborty, R., Haque, M., Suter, P., 2015. Yield and economic return of seedling tuber derived from true potato seed as influenced by tuber size and plant spacing. Univers. J. Agric. Res., 3(1): 23-30.

Ryant, P., Dolezelova, E., Fabrik, I., Baloun, J., Adam, V., Babula, P., Kizek, R., 2008. Electrochemical determination of low molecular mass thiols content in potatoes (Solanum tuberosum) cultivated in the presence of various sulphur forms and infected by late blight (Phytophora infestans). Sensors, 8(5): 3165-3182.

Sabetta, W., Paradiso, A., Paciolla, C., de Pinto, M.C., 2017. Chemistry, Biosynthesis, and Antioxidative Function of Glutathione in Plants, Glutathione in Plant Growth, Development, and Stress Tolerance. Springer, 1-27.

Singh, N., Rajini, P., 2004. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem., 85(4): 611-616.

Smirnoff, N., 2005. Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. J. ROS., (3):53-86.

Stewart, D., McDougall, G., 2012. Potato; A nutritious, tasty but often maligned staple food. Produced for FHIS by. 1-11.

Vaghasiya, J., Sheth, N., Bhalodia, Y., Manek, R., 2011. Sitagliptin protects renal ischemia reperfusion induced renal damage in diabetes. Regul. Pept., 166(1-3): 48-54.

Washimkar, V.B., Shende, M., 2016. Plant Tissue Culture in Herbal Medicinal Plants–Review. Eur. J. Pharmac. Med. Res., 3(11): 696-699.

Wijeratne, S.S., Abou-Zaid, M.M., Shahidi, F., 2006. Antioxidant polyphenols in almond and its coproducts. J. Agric. Food Chem., 54(2): 312-318.

Zaynab, M., Kanwal, S., Hussain, I., Qasim, M., Noman, A., Iqbal, U., Ali, G.M., Bahadar, K., Jamil, A., Sughra, K., Rehman, N., Buriro, M., Abbas, S., Ali, M., Alvi, A.H., Anwar, M., Khan, M.I., Tayyab, M., 2017. Rice Chitinase Gene Expression in Genetically Engineered Potato Confers Resistance against Fusarium solani and Rhizictonia solani. PSM Microbiol., 2(3): 63-73.