Antagonistic Potential of Native Trichoderma species against Tomato Fungal Pathogens in Yemen

Author's: Nesrain A. Al-Mekhlafi, Qais Y. Abdullah, Mohammed F. Al-Helali, Saeed M. Alghalibi
Corresponding Author: Nesreen A. Al-Mekhlafi      Email:
Article Type: Research Article     Published: Apr. 30, 2019 Pages: 1-10
DOI:        Views 173       Downloads0


The present study was conducted to determine the antagonistic potential of native Trichoderma species against tomato fungal pathogens in Yemen. A total of 200 rhizosphere soil samples of different crops (sorghum, corn and potato) were collected from different provinces in Yemen (Ibb, Sana’a, Taiz, Amran, Thamar and Al-Hodaida) and screened for the presence of Trichoderma species isolates and their antifungal activity against four pathogenic fungi (A. solani, F. oxysporum, P. ultimum and R. solani) using dual culture technique. Thirteen Trichoderma species were identified among a total of 96 Trichoderma isolates. T. harzianum (33.33%) was the most predominant species occurring in the present soil samples. Trichoderma species showed the ability to grow in the moisture content of the soil ranging from 12.28%  to 23.49% and pH values ranging from 7.16 to 7.88. Results showed that antagonistic potential of Trichoderma isolates varied significantly which inhibited the growth of the pathogen isolates at varying degrees. Among the isolates of Trichoderma, only 16 isolates showed strong antagonistic activity and inhibited four pathogenic fungi by more than 50%. These potential isolates of Trichoderma may be further exploited as biocontrol agent against soilborne pathogenic fungi.


Trichoderma, biological control, tomato, Yemen.


Al-Mekhlafi, N.A., Abdullah, Q.Y., Al-Helali, M.F., Alghalibi, S.M., 2019. Antagonistic Potential of Native Trichoderma species against Tomato Fungal Pathogens in Yemen. Int. J. Mol. Microbiol.,  2(1):1-10.


Agrios, G.N., 1997. Plant pathology. fourth ed. Academic Press, New York, USA.

Akrami, M., Yousefi,  Z., 2015. Biological control of Fusarium wilt of tomato (Solanum lycopersicum) by Trichoderma spp. as antagonist fungi. Biol. Forum. An Int. J., 7(1): 887-892.

Alsanoy, A., Abdulwadood, A., 2014. Environmental and social management plant for Ibb governorate sub-project (612.7 km). Road asset management project (RAMP). Ministry of public works and highways (MPWH).

Alsohiby, F.A.A., Yahya, S., Humaid, A.A., 2016. Screening of Soil Isolates of Bacteria for Antagonistic Activity against Plant Pathogenic Fungi. PSM Microbiol., 01(1): 05-09.

ASYB. (Agricultural Statistics Year Book), 2015. Republic of Yemen, Ministry of agriculture and irrigation, 26 (1): 51-76.

AWPA. (American wood preservation association’s standards), 1986. Book of standars. American wood-preservers association standards. Maryland 21666. USA.,  55.

Bastakoti, S., Belbase, S., Manandhar, S., Arjyal, C., 2017. Trichoderma species as biocontrol agent against soil borne fungal pathogens. Nepal J. Biotechnol., 5(1): 39-45.

Bell, D.K., Wells, H.D., Markham, C.R., 1982.  In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathol., 72: 379-382.

Bissett, J., 1991. A revision of the genus Trichoderma. II. Infrageneric classification. Can. J. Bot., 69(11): 2357–2372.

Blaszczyk, L., Popiel, D., Chelkowski, J., Koczyk, G., Samuels, G.J., Sobieralski, K., 2011. Species diversity of Trichoderma in Poland. J. Appl. Genet., 52(2): 233-243.

Carmona-Hernandez, S., Reyes-Pérez, J.J., Chiquito-Contreras, R.G., Rincon-Enriquez, G., Cerdan-Cabrera, C.R., Hernandez-Montiel, L.G., 2019. Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agron., 9(3): 121.

Cook, R.J., 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol., 31: 53-80.

Cook, R.J., Baker, K.F., 1983. The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul, MN, P. 539.

Danielson, R.M., Devey, C.B., 1973. The abundance of Trichoderma propagules and the distribution of species in forest soil. Soil Biol. Biochem., 5(5): 485-494.

Digambar, P.S., 2017. Geographical diversity analysis of Trichoderma spp. isolates based on Sequence Related Amplified Polymorphism (SRAP) marker. M.Sc. Thesis. College of agricultural biotechnology, Latur. India.

Elad, Y., Chet, I., Henis, Y., 1981. A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica., 9(1): 59-67.

El Gouri, M., Sailan, A., Bahmish, H., Al-Mualem, A., Bazarah, M., Al Kulaidi, A., 1996. Yemen country report to the FAO international technical conference on plant genetic resources. Yemen country report.

El-Katatny, M.H., Gudelj, M., Robra, K.H., Elnaghy, M.A., Gübitz, G.M., 2001. Characterization of a chitinase and an endo-b-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolf­sii. Appl. Microbiol. Biotechnol., 56(1-2): 137-143.

Eziashi, E.I., Omamor, I.B., Dimaro-Oruade, E.A., Ogunkanmi, L.A., 2007. Control of phytotoxin from Ceratocystis paradoxa using Trichoderma species phytotoxins on oil palm (Elaeis quineensis Jacq.) sprouted seeds. Plant Pathol. J., 6(4): 324-329.

Garbeva, P., Veen, J.A., Elsas, J.D., 2004. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol., 42: 243-270.

Gherbawy, Y., Druzhinina, I.S., Shaban, G.M., Wuczkowsky, M., Yaser, M., El-Naghy, M.A., Prillinger, H., Kubicek, C.P., 2004. Trichoderma populations from alkaline agricultural soil in the Nile valley, Egypt, consists of only two species. Mycol. Prog., 3(3): 211-218.

Gravel, V., Martinez, C., Antoun, H., Tweddella, R.J., 2006. Antagonist microorganism with the ability to control Pythium damping off of tomato seeds in rock wool. Biocontrol., 50(5): 771-786.

Hajieghrari, B., Torabi-Giglou, M., Mohammadi, M.R., Davari, M., 2008. Biological potential of some Iranian Trichoderma isolates in control of soilborne plant pathogenic fungi. Afr. J. Biotechnol., 7(8): 967-972.

Harman, G.E., 2006. Overview of mechanisms and uses of Trichoderma spp.  Phytopathol., 96: 190-194.

Hashmi, I.H., Aslam, A., Farooq, T.H., Zaynab, M., Munir, N., Tayyab, M., Abbasi, K.Y., 2018. Antifungal Activity of Biocontrol Agents against Corm Rot of Gladiolus grandiflorus L. Caused by Fusarium oxysporum. Int. J. Mol. Microbiol., 1(1): 29-37.

Houssien, A.A., Ahmed, S.M., Ahmed, A., 2010. Activation of tomato plant defense response against Fusarium wilt disease using Trichoderma harzianum and salicylic acid under greenhouse conditions. Ismail Res. J. Agric. Biol. Sci., 6(3): 328-338.

Howell, C.R., 1998. The role of antibiosis in biocontrol. In Trichoderma and Gliocladium, Kubicek CP, Harman GE, ed. London, Bristol, PA: Taylor and Francis, 173-184.

Indira, T., Kamala, S., 2011. Evaluation of indigenous Tricho­derma isolates from Manipur as biocontrol agent against Py­thium aphanidermatum on common beans. Biotech., 1: 217- 215.

Intana, W., 2003. Selection and development of Trichoderma spp. for high glucanase, antifungal metabolite producing and plant growth promoting isolates for biological control of cucumber damping-off caused by Pythium spp. Ph.D. Thesis. Kasetsart University, Thailand.

Iqbal, M.N., Ashraf, A., 2017. Antagonism in Rhizobacteria: Application for Biocontrol of Soil-borne Plant Pathogens. PSM Microbiol., 2(3): 78-79.

Islam, S., 2018. Microorganisms in the Rhizosphere and their Utilization in Agriculture: A Mini Review. PSM Microbiol., 3(3): 105-110.

Jash, S., Pan, S., 2004. Evaluation of mutant isolates of T. harzianum against Rhizoctonia solani causing seedling blight of green gram. Indian J. Agric. Sci., 74: 190-193.

Jiang, H., Zhang, L., Zhang, J., Ojaghian, M.R., Hyde, K.D., 2016. Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro. J. Zhejiang Uni. Scie., B. 17(4):271–281.

Johnson, L.E., Bond, C.J., Fribourg, H., 1959. Methods for studying soil microflora-plant disease relationships. Minneapolis: Burgess Publishing Company.

Kale, G.J., Rewale, K. A., Sahane, S.P., Magar, S.J., 2018. Isolation of Trichoderma spp. from the rhizospheric soils of tomato crop grown in Marathwada region. J. Pharmacogn. Phytochem., 7(3): 3360-3362.

Khang, V.T., Anh, N.T. M., Tu, P. M., Tham, N.T.H., 2013. Isolation and selection of Trichoderma spp. exhibiting high antifungal activities major pathogens in Mekong Delta. Omonrice, 19: 159-171.

Kavitha, T., Nelson, R., 2013. Exploiting the biocontrol activity of Trichoderma spp. against root rot causing phytopathogens. ARPN J. Agric. Biol. Sci., 8(7): 571-574.

Körmöczi, P., Danilović, G., Manczinger, L., Jovanović, L., Panković, D., Vágvölgyi, C., Kredics, L., 2013. Species composition of  Trichoderma isolates from the rhizosphere of vegetables grown in Hungarian soils. Fresenius Environ. Bull., 22 (6): 1736- 1741.

Kubicek, C.P., Mach, R.L., Peterbauer, C.K., Lorito, M., 2001. Trichoderma: From genes to biocontrol. Plant Pathol., 83(2): 11-23.

Landreau, A., Pouchus, Y.F., Sallenave-Namont, C., Biard, J.F., Boumard, M.C., Robiou du, P.T., Mondeguer, F., Goulard, C., Verbist, J.F., 2002. Combined use of LC/MS and biological test for rapid identification of marine mycotoxins produced by Trichoderma koningii. J. Microbiol. Meth., 48: 181-194.

Leadbeater, A., 2015. Recent developments and challenges in chemical disease control. Plant Protect. Sci., 51(4): 163-169.

Lo, C.T., Nelson, E.B., Harman, G.E., 1996. Biological control of turfgrass diseases with a rhizosphere competent strain of Trichoderma harzianum. Plant Dis., 80(7): 736-741.

Marco, J.L.D., Valadares-Inglis, M.C., Felix, C.R., 2003. Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa the causal agent of witches broom of cocoa. Braz. J. Microbiol., 34: 33-38.

Mondal, G., Dureja, P., Sen, B., 2000. Fungal metabolites from Aspergillus niger AN27 related to plant growth promotion. Indian J. Exp. Biol., 38: 84-87.

Muthukumar, A., Eswaran, A., Sanjeevkumar, K., 2008. Biological control of Pythium aphanidermatum (Edson.) Fitz. Mysore J. Agric. Sci., 42: 20-25.

Naeimi, S., Khidaparast, S.A., Javan-Nikkhah, M., Vágvölgyi, C., Kredics, L., 2011. Species pattern and phylogenetic relationships of Trichoderma strains in rice fields of Southern Caspian Sea, Iran. Cereal Res. Commun., 39(4): 560-568.

Pan, S., Roy, A., Hazra, S., 2001.  In vitro variability of biocontrol potential among some isolates of Gliocladium virens. Adv. Pl. Sci., 14: 301-303.

Rahman, A., Begum, M. F., Matiur, R.M.A., Bari, G.N.M., Ilias, M., Alam, F., 2011. Isolation and identification of Trichoderma species from different habitats and their use for bioconversion of solid waste. Turk. J. Biol., 35: 183-194.

Rai, S., 2017. Genomic diversity of antagonistic Trichoderma species against phytopathogen of Lycopersicon esculentum Mill, Ph.D. thesis, Allahabad, India.

Ranasingh, N., Saurabh, A., Nedunchezhiyan, M., 2006. Use of Trichoderma in disease management. Orissa review, 68-70.

Ranga, R.A., Khayum, A.S., Patibanda, A.K., 2017. Isolation and identification of native antagonistic Trichoderma spp. from rhizosphere groundnut, redgram and tomato. IJABBR., 7(3): 568-570.

Reddy, B.N., Saritha, K.V.,  Hindumathi, A., 2014. In vitro screening for antagonistic potential of seven species of Trichoderma against different plant pathogenic fungi. Res. J. Biol., 2: 29 -36.

Redda, E.T., Ma, J., Mei, J., Li, M., Wu, B., Jiang, X., 2018. Antagonistic potential of different isolates of Trichoderma against Fusarium oxysporum, Rhizoctonia solani, and Botrytis cinerea. Euro. J. Exp. Bio., 8(2:12): 1-8.

Rifai, M.A., 1969. A revision of the genus Trichoderma. Mycol. Pap., 116: 1-56.

Samuels, G., 2004. Growth rate/colony radius [Online]. Available at: http: //www .isth .info /methods /method.php?method_id=4 [accessed 18 March 2013].

Sanjay, R., Ponmurgan, P., Baby, U.I., 2008. Evaluation of fungicides and biocontrol agents against grey blight disease of tea in the field. Crop Prot., 27: 689-694.

Siameto, E.N., Okoth, S., Amugune, N.O., Chege, N.C., 2011. Molecular characterization and identification of biocontrol isolates of Trichoderma harzianum from Embu District, Kenya. Trop. Subtrop. Agroecosyst., 13(1): 81- 90.

Singh, H.B., 2006. Trichoderma: A boon for biopesticides industry. J. Mycol. Plant Pathol., 36: 373-384.

Siyar, S., Inayat, N., Hussain, F., 2019. Plant Growth Promoting Rhizobacteria and Plants’ Improvement: A Mini-Review. PSM Biol. Res., 4(1): 1-5.

Sule, I.O., Oyeyiola, G.P., 2012. Fungi in the rhizosphere and rhizoplane of Cassava cultivar TME 419. Int. J. Appl. Biol. Res., 4(1-2): 18-30.

Sun, R.Y., Liu, Z.C., Fu, K., Fan, L., Chen, J., 2012. Trichoderma biodiversity in China. J. Appl. Genet., 53(3): 343-354.

Tewari, R., Vishunavat, K., 2012. Management of early blight (Alternaria solani) in tomato by integration of fungicides and cultural practices. Int. J. Plant Prot., 5: 201-206.

Vey, A., Hoagland, R.E., Butt, T.M., 2001. Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N, eds. Fungi as biocontrol agents: Progress, problems and Potential. CAB International, Bristol, 311-346.

Vinale, F., Sivasithamparam, E.L., Ghisalberti, R., Marra, S.L., Lorito, M., 2008. Trichoderma – plant pathogens interactions. Soil Biol. Biochem., 40: 1-10.

Woo, S.L., Scala, F., Ruocco, M., Lorito, M., 2006. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi and plants. Phytopathol., 96: 181-185.

Yan, X.S., Quing-Tao, S., Shu-Tao, X., Xiu-Lan, C., Cai-Yun, S., Yu-Zhong, Z., 2006. Broad spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol. Lett., 260: 119-125.