A Review on Nanofluid Impingement Jet Heat Transfer

Author's: Amr Mostafa Darwish, Abdel-Fattah Mohamed Ramsdan El-Kersh, Mohamed Naguib El-Sheikh, Ibraheem Mahmoud El-Moghazy
Corresponding Author: Amr Mostafa Darwish      Email: im_perfect_one@yahoo.com
Article Type: Review Article     Published: Oct. 23, 2017 Pages: 1-15
DOI:        Views 1380       Downloads0

Abstract:

This paper presents overview of experimental investigations and numerical developments using single or multiple nanofluid jet impingement on a hot surface as a heat transfer enhancement technique which employed in many industrial applications. Jet impingement systems can be classified as: confined, semi confined and unconfined jet. Nanofluid can enhance heat transfer process due to its thermal transport properties of the base fluid, increase the surface area and heat capacity of the fluid and the thermal conductivity. The results of heat transfer enhancement, fluid flow characteristics and effects of nanofluid jet impingement geometrical parameters were presented and analyzed from the previous studies. Nanofluid preparations, its physical and thermal properties with correlations are also presented.

Keywords:

Heat transfer enhancement, fluid flow, jet impingement, nanofluid, single jet, multiple jets.

Cite this article:

Darwish, A.M., Elkersh, A.M.R., Elsheikh, M.N., Elmoghazy, I.M., 2017. A Review on Nanofluid Impingement Jet Heat Transfer. Int. J. Nanotech. Allied. Sci., 1(1): 1-15.

REFERENCES

Ahmadi, H., Moghari, R.M., Esmailpour, K., Mujumdar, A.S., 2016.Numerical investigation of semi-confined turbulent slot jet impingement on a concave surface using an Al2O3-water nanofluid.applied mathe Appl. Math. Model., 40(2): 1110-1125.‏

Allende, M.F., Barnes, G.H., Levy, S.W. O’Reilly, W.J., 1961. The Bacterial Flora of the Skin of Amputation Stumps. J. Investigative Dermatol, 36(3): 165-166.‏

Armaghani, T., Maghrebi, M. J., Talebi, F., 2012. Effects of nanoparticle volume fraction in hydrodynamic and thermal characteristics of forced plane jet.  Journal of Thermal Sci., 16 (2): 455-468.

Behbahani, A. I., Goldstein, R. J., 1983. Local heat transfer to staggered arrays of impinging circular air jets. J. Eng. Gas Turbines Power, 105(2): 354-360.‏

Brakmann, R., Chen, L., Weigand, B., Crawford, M., 2015, June. Experimental and Numerical Heat Transfer Investigation of an Impinging Jet Array on a Target Plate Roughened by Cubic Micro Pin Fins. In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition.  V05AT11A002-V05AT11A002. American Society of Mechanical Engineers.‏

Bunker, R.S., Metzger, D.E., 1990. Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction. J. Turbomachinery, 112(3): 451-458.

Button, B.L., Wilcock, D., 1978. Impingement heat transfer—a bibliography 1890–1975. Previews Heat Mass Transfer, 4(3): 83-89.‏

Chance, J.L., 1974. Experimental Investigation of Air Impingement Heat-TnansferUder an Array of Round Jets. Tappi, 57(6): 108-112.

Chang, T.B., Yang, Y.K., 2014. Heat transfer performance of jet impingement flow boiling using Al2O3-water nanofluid. JMST, 28(4): 1559-1566.‏

Cho, H.H., Kim, K.M., Song, J., 2011. Applications of impingement jet cooling systems. Cooling Systems: Energy, Engineering and Applications, first ed., Nova Publishers, New York.‏

Choi, S.U.S ,1995. Development and applications of Non-Newtonian flows, Ed. D. A. Singiner and H.P. Wang, ASME, 66(4): 99–106.

Chon, C.H., Kihm. K.P, Lee. S.P, Choi S.U.S., 2005. Empirical correction finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phy. Lett., 87(15): 1507-1531.

Das, S.K., Putra. N., Thiesen.P, Roetzel W., 2003. Temperature dependence of thermal Conductivity enhancement for nano fluids. Transactions of the ASME J. Heat Transfer, 125(4): 567-574.

Di Lorenzo, G., Manca, O., Nardini, S., Ricci, D., 2012. Numerical study of laminar confined impinging slot jets with nanofluids. AIME, Article ID 248795, DOI:10.1155/2012/ 248-795.

Dogruoz, M.B., ,Orgega, A., 2003. A Numerical Study of Turbulent Heat Transfer in Unconfined Impinging Slot Jets. ASME 2003 International Mechanical Engineering Congress and Exposition , American Society of Mechanical Engineers: 397-404.

Dutta, R., Dewan, A., Srinivasan, B., 2016. CFD study of slot jet impingement heat transfer with nanofluids. Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 230(2): 206-220.‏

Dyban, E.P., Mazur, A.I., 1970. Heat transfer from a flat air jet flowing into a concave surface. Heat transfer during plane air jet impact into concave surface with parabolic profile, determining specific thermal fluxes by electrocalorimetry. Heat Transfer – Sov. Res., 2(4): 15-20.

Ersayın, E., Selimefendigil, F., 2013. Numerical investigation of impinging jets with nanofluids on a moving plate. MCA, 18(3): 428-437.‏

Fabbri, M., Dhir, V.K., 2005. Optimized heat transfer for high power electronic cooling using arrays of microjets. J. Heat Transfer, 127(7): 760-769.‏

Feng, Y., Kleinstreuer, C., 2010. Nanofluid convective heat transfer in a paralleldisk system. Int. J. Heat Mass Transfer, 53(4): 4619-4628.

Fitzgerald, J.A., Garimella, S.V., 1998. A study of the flow field of a confined and submerged impinging jet. Int. J. Heat Mass Transfer, 41(8): 1025-1034.

Florschuetz, L.W., Metzger, D.E., 1984. Effects of initial crossflow temperature on turbine cooling with jet arrays. Heat and mass transfer in rotating machinery (A 86-24451 09-34). Washington, DC, Hemisphere Publishing Corp.: 499-510.

Florschuetz, L.W., Tseng, H.H., 1985. Effect of nonuniform geometries on flow distributions and heat transfer characteristics for arrays of impinging jets, J. Eng. Gas Turbines Power, 107(1): 68-75.‏

Florschuetz, L.W., Metzger, D.E., Truman, C.R., 1981. Jet Array Impingement with Crossflow-Correlation of Streamwise Resolved Flow and Heat Transfer Distributions.  ASME.‏

Florschuetz, L.W., Truman, C.R., Metzger, D.E., 1981. March. Streamwise flow and heat transfer distributions for jet array impingement with crossflow. In ASME 1981 International Gas Turbine Conference and Products Show (V003T09A005-V003T09A005).

Friedman, S.J., Mueller, A.C., 1951. Heat Transfer between a Flat Plate and Jets of Air Impinging on it, IMechE, London: 138-142.‏

Gardon, R., Cobonpue, J., 1962. Heat Transfer Between a Flat Plate and Jets of Air Impinging on It, Proceedings, 2nd International Heat Transfer Conference, ASME, New York,  454-460.

Gau, C., Chung, C.M., 1991. Surface curvature effect on slot-air-jet impingement cooling flow and heat transfer process. J. Heat Transfer, 113(4): 858-864.

Gauntner, James W., Livingood,  J., Peter Hrycak, 1970. Survey of literature on flow characteristics of a single turbulent jet impinging on a flat plate. Washington, DC: 19.

Geers, L.F.G., Tummers, M.J., Bueninck, T.J., Hanjalić, K., 2008. Heat transfer correlation for hexagonal and in-line arrays of impinging jets, Int. J. Heat Mass Transfer, 51(21): 5389-5399.‏

Geers, L.F., Tummers, M.J., Hanjalić, K., 2004. Experimental investigation of impinging jet arrays. Exp. Fluids, 36(6): 946-958.

Gherasim, I., Roy, G., Nguyen, C.T., Vo-Ngoc, D., 2009. Experimental investigation of nanofluids in confined laminar radial flows. Int. J. Thermal Sci., 48(1):1486-1493.

Gherasim, I., Roy, G., Nguyen, C.T.,  Vo-Ngoc, D., 2011. Heat transfer enhancement and pumping power in confined radial flows using nanoparticle suspensions (nanofluids). Int. J. Thermal Sci., 50(6): 369-377.

Goldstein, R.J., Timmers, J.F., 1982. Visualization of heat transfer from arrays of impinging jets. Int. J. Heat Mass Transfer, 25(12): 1857-1868.‏

Guangbina, Y., Dejuna, G., Juhuia, C., Binga, D., Dia, L., Yea, S., Xib, C., 2000 .Experimental research on Heat transfer characteristics of CuO nanofluid in adiabatic condition.

Guo, D., Wei, J., Zhang, Y.H., 2011.Enhanced flow boiling heat transfer with jet impingement on micro-pin-finned surfaces. Appl. Therm. Eng., 31(11): 2042-2051.‏

Hamilton, R.L. ,Crosser, O.K., 1962. Thermal conductivity of heterogeneous two component systems. Ind. Eng. Chem. Fundam.,1(3): 187-191.

Han, B., Goldstein, R.J., 2001. Jet‐Impingement Heat Transfer in Gas Turbine Systems. Ann. N. Y. Acad. Sci., 934(1): 147-161.

Hofmann, H.M., Kaiser, R., Kind, M., Martin, H., 2007. Calculations of steady and pulsating impinging jets—an assessment of 13 widely used turbulence models. NUMER HEAT TR B-FUND, 51(6): 565-583.‏

Hollworth, B.R., Berry, R.D., 1978. Heat transfer from arrays of impinging jets with large jet-to-jet spacing. J. Heat Transfer, 100(2): 352-357.

Hollworth, B.R., Cole, G.H., 1987. Heat transfer to arrays of impinging jets in a crossflow. J. Turbomachinery, 109(4): 564-571.

Hrycak, Peter, 1981. Heat transfer from impinging jets, a literature review. NEW JERSEY INST OF TECH NEWARK.

http://www.decagon.com (Available, 18/8/2015)

http://www.flowmeters.com/turbine-technology (Available, 18/8/2015)

http://www.hydramotion.com (Available, 18/8/2015)

Huang, G.C., 1963. Investigations of heat-transfer coefficients for air flow through round jets impinging normal to a heat-transfer surface. J. Heat Transfer, 85(3): 237-243.‏

Huang, J.B., Jang, J.Y., 2013. Numerical study of a confined axisymmetric jet impingement heat transfer with nanofluids. Engineering, 5(1):60-69.

Isman, M.K., Pulat, E., Etemoglu, A.B., Can, M., 2008. Numerical investigation of turbulent impinging jet cooling of a constant heat flux surface, NUMER HEAT TR A APPL Journal, 53(10): 1109-1132.‏

Jaberi, B., Yousefi, T., Farahbakhsh, B., Saghir, M.Z., 2013. Experimental investigation on heat transfer enhancement due to Al 2 O 3–water nanofluid using impingement of round jet on circular disk. Int. J. Therm. Sci., 74(1):199-207.‏

Jambunathan, K., Button, B.L., 1994. Jet-Impingement Heat Transfer: A Bibliography 1986-1991. Previews of Heat and Mass Transfer, 20(5): 385-413.

Jambunathan, K., Lai, E., Moss, M. A., Button, B. L., 1992. A review of heat transfer data for single circular jet impingement.  INT J HEAT FLUID FL,13(2): 106-115.

Jha, J.M., Ravikumar, S.V., Tiara, A.M., Sarkar, I., Pal, S. K., Chakraborty, S., 2015. Ultrafast cooling of a hot moving steel plate by using alumina nanofluid based air atomized spray impingement. Appl. Therm. Eng., 75(4): 738-747.‏

Kercher, D.M., Tabakoff, W., 1970. Heat transfer by a square array of round air jets impinging perpendicular to a flat surface including the effect of spent air. J. Eng. Gas Turbines Power., 92(1): 73-82.

Koopman, R.N., Sparrow, E.M., 1976. Local and average transfer coefficients due to an impinging row of jets. Int. J. Heat  Mass Transfer, 19(6):673-683.

Kornblum, Y., Goldstein, R.J., 1997. Jet Impingement on Semicylindrical Concave and Convex Surfaces: Part Two-Heat Transfer. In Intel Symposium on Physics of Heat Transfer in Boiling and Condensation: 597-602.

Krishnamuthy, S., Bhattacharaya, P., Phelen, P.E., Prasher, R.S., 2006. Enhanced Mass Transport in Nanofluids. Nano Lett., 6(3): 419-423.

Kubacki, S., Dick, E., 2011. Hybrid RANS/LES of flow and heat transfer in round impinging jets. Int. J. Heat Fluid Fl., 32(3): 631-651.

Kumar, R., Mulugeta, N., 2014. Inline Array Jet Impingement Cooling Using Al2O3/Water Nanofluid In A Plate Finned Electronic Heat Sink. AJER, 3(3): 188-196

Lam, P.A.K., Prakash, K.A., 2016. Thermodynamic investigation and multi-objective optimization for jet impingement cooling system with Al2O3/waternanofluid. Energy Convers. Manag., 111(1): 38-56.‏

Lasance, C., 1997. Technical data column. Electronics Cooling.

Lee, S., Choi, S.U.S., Eastman, J.A.,1999. Measuring Thermal conductivity fluids containing Oxide nanoparticles, Transactions of ASME Journal of heat transfer, 121(2): 280 – 289.

Leland, J.E., Ponnappan, R., Klasing, K.S., 2002. Experimental investigation of an air microjet array impingement cooling device, J. Thermophys Heat Transfer, 16(2): 187-192.‏

Li, Q., Xuan, Y., Yu, F., 2012.Experimental investigation of submerged single jet impingement using Cu–water nanofluid. Appl. Therm. Eng., 36: 426-433.‏

Li, W., Ren, J., Hongde, J., Ligrani, P., 2016. Assessment of six turbulence models for modeling and predicting narrow passage flows, part 1: Impingement jets. Numer. Heat Tra. Appl., 69(2):109-127.‏

Li, Y.Y., Liu, Z.H., Wang, Q., 2014. Experimental study on critical heat flux of steady boiling for high-velocity slot jet impinging on the stagnation zone. Int. J. Heat  Mass Transfer, 70:1-9.‏

Li, Y.Y., Liu, Z.H., Wang, G.S., Pang, L., 2013. Experimental study on critical heat flux of high-velocity circular jet impingement boiling on the nano-characteristic stagnation zone, Int. J. Heat Mass Transfer, 67: 560-568.‏

Liu, Z.H., Qiu, Y.H., 2007. Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface. Heat Mass Transfer, 43(7):699-706.‏

Liu, Z., Qiu, Y., 2007. Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface, Int. J. Heat Mass Transfer, 43:699-706.

Lupton, T.L., Murray, D.B., Robinson, A.J., 2008. The effect of varying confinement levels on the heat transfer to a miniature impinging air jet. Eurotherm. Eindhoven, Netherlands.

Mahbubul, I.M., Saidur, R., Amalina, M.A., 2012. Latest developments on the viscosity of nanofluids, Int. J.  Heat Mass Transfer, 55(4): 874-885.‏

Manca, O., Mesolella, P., Nardini, S., Ricci, D., 2011. Numerical study of a confined slot impinging jet with nanofluids, NRL, 6(1): 1-16.

Manca, O., Nardini, S., Ricci, D., Tamburrino, S., 2013, November. A Numerical Investigation on Nanofluid Laminar Mixed Convection in Confined Impinging Jets. In ASME 2013 International Mechanical Engineering Congress and Exposition (V08CT09A062-V08CT09A062). American Society of Mechanical Engineers.‏

Martin, Holger, 1977.  Heat and mass transfer between impinging gas jets and solid surfaces, In: Advances in heat transfer, New York, Academic Press, Inc., 13(1):1-60.

Masuda. H., Ebata. A., Teramae. K., Hishinuma, N., 1993. Alteration of thermal conductivity and Viscosity of liquid by dispersing ultra-fine particles, Netsu Bussei, 7:227 – 233.

Meola, C., 2009. A new correlation of Nusselt number for impinging jets. Heat Transfer Eng., 30(3): 221-228.‏

Metzger, D. E., Korstad, R. J., 1972. Effects of crossflow on impingement heat transfer, J. Eng. Gas Turbines Power, 94(1): 35-41.

Metzger, D.E., Yamashita, T., Jenkins, C.W., 1969. Impingement cooling of concave surfaces with lines of circular air jets, J. Eng. Gas Turbines Power, 91(3):149-155.

Michna, G.J., Browne, E.A., Peles, Y., Jensen, M.K., 2011. The effect of area ratio on microjet array heat transfer.  Int. J.Heat Mass Transfer, 54(9): 1782-1790.‏

Mohammed, H.A., Al-Aswadi, A., Shuaib, N.H., Saidur, R., 2011. Convective heat transfer and fluid flow study over a step using nanofluids: a review. Renew Sust. Energ. Rev., 15(6):2921-2939.‏

Molana, M., Banooni, S., 2013. Investigation of heat transfer processes involved liquid impingement jets: a review, Braz. J. Chem. Eng., 30(3): 413-435.

Mukherjee, S., Paria, S., 2013. Preparation and Stability of Nanofluids-A Review. IOSR J. Mechanical and Civil Engineering, 9(2): 63-69.

Nguyen, C.T., Galanis, N., Polidori, G., Fohanno, S. Popa, C.V., Le Bechec, A., 2009.  An experimental study of a confined and submerged impinging jet heat transfer using Al2O3-water nanofluid, Int. J. Thermal Sci.,48(40):1-411.

Nguyen, C.T., Laplante, G., Cury, M, Simon, G., 2008. Experimental investigation of impinging jet heat transfer and erosion effect using Al2O3-water nanofluid, 6th IASME/WSEAS International Conference on Fluid Mechanics and Aerodynamics (FMA’08), Rhodes, Greece: 44-49.

Obot, N.T., Trabold, T.A., 1987. Impingement heat transfer within arrays of circular jets: Part 1—Effects of minimum, intermediate, and complete crossflow for small and large spacings. J. Heat Transfer, 109(4): 872-879.

Pak. B.C., Cho.Y.I, 1998. Hydrodynamics and heat transfer study of dispersed fluids with Submicron metallic Oxide particles. Exp. Heat Transfer, 11(2):151-170.

Palm, S. J., Roy, G. and Nguyen, C. T. (2006), Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties, Appl. Therm. Eng.,  26,  2209-2218.

Prashe,R .R., Phelan, P.E., Bhaltacharya, P., 2005. Effect of aggregation kinetics on the thermal Conductivity of nanoscale colloidal solutions (Nanofluids),  Nano. Lett.,  6(7):1529 – 1534.

Rahimi-Esbo, M., Ranjbar, A., Ramiar, A., ,Rahgoshay, M., 2012. Numerical simulation of forced convection of nanofluid in a confined jet, Heat  Mass Transfer, 48(12): 1995-2005.‏

Rallabandi, A.P., Rhee, D.H., Gao, Z., Han, J.C., 2010. Heat transfer enhancement in rectangularchannels with axial ribs or porous foam under through flow and impinging jet conditions, Int. J. Heat Mass Transfer, 53(21):4663-4671.‏

Robinson, A.J., Schnitzler, E., 2007.  An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer, Exp. Therm. Fl. Sci., 32(1):1-13.‏

Roy, G., Nguyen, C.T., Lajoie, P.R., 2004. Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlattices Microstruct,  35: 497-511.

Royne, A., Dey, C.J., 2006. Effect of nozzle geometry on pressure drop and heat transfer in submerged jet arrays, Int. J. Heat Mass Transfer, 49(3): 800-804.‏

Saad, N.R., Mujumdar, A.S., Messeh, W.A., Douglas, W.J.M., 1980. Local heat transfer characteristics for staggered arrays of circular impinging jets with crossflow of spent air. ASME Paper, 80(1): 1-20.‏

Sagot, B., Antonini, G., Christgen, A., Buron, F., 2008. Jet impingement heat transfer on a flat plate at a constant wall temperature, Int. J. Thermal Sciences, 47(12): 1610-1619.‏

Selimefendigil, F.,  Öztop, H.F., 2014. Pulsating nanofluids jet impingement cooling of a heated horizontal surface, Int. J. Heat Mass Transfer, 69:54-65.‏

Shanthi, R., Anandan, S., Ramalingam, V., 2012. Heat transfer enhancement using nanofluids: an overview, Therm. Sci., 16(2):423-444.

Shariatmadar, H., Mousavian, S., Sadoughi, M., Ashjaee, M., 2016. Experimental and numerical study on heat transfer characteristics of various geometrical arrangement of impinging jet arrays, Int. J. Thermal Sciences, 102(4): 26-38.‏

Shih, T.H., Zhu, J., Lumley, J.L., 1995. A new Reynolds stress algebraic equation model, Comput Methods Appl. Mech. Eng., 125(1): 287-302.

Solangi, K.H., Kazi, S.N., Luhur, M.R., Badarudin, A., Amiri, A., Sadri, R., Teng, K.H., 2015. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids, Energy, 89, 1065-1086.‏

Souris, N., Liakos, H., Founti, M., 2004. Impinging jet cooling on concave surfaces. AIChE J., 50(8): 1672-1683.

Teamah, M.A., ,Farahat, S., 2003. Experimental and numerical heat transfer from impinging of single free liquid jet, AEJ.,  42(5):559-575.

Teamah, M.A., Dawood, M.M.K., Shehata, A., 2016. Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontal flat plate, Exp. Therm. Fl. Sci., 74: 235-246.‏

Tie, P., Li, Q., Xuan, Y., 2014. Heat transfer performance of Cu–water nanofluids in the jet arrays impingement cooling system, Int. J. Thermal Sciences, 77: 199-205.‏

Vaziei, P., Abouali, O., 2009. Numerical study of fluid flow and heat transfer for Al2O3-waternanofluid impinging jet, In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels, ASME, 977-984.‏

Wang, E.N., Zhang, L., Jiang, L., Koo, J.M., Maveety, J.G., Sanchez, E., Kenny, T.W., 2004. Micromachined jets for liquid impingement cooling of VLSI chips, J. Microelectromech. Syst., 13(5): 833-842.‏

Wang, X., Xu, X., S. Choi, S.U., 1999.Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys Heat Transfer,13(4): 474-480.

Wang, X., 2007. New approaches to micro-electronic component cooling, PhD Thesis in Mechanical Engineering, National University of Singapore, Singapore.

Whelan, B.P., Robinson, A.J., 2009. Nozzle geometry effects in liquid jet array impingement, Appl. Therm. Eng., 29(11): 2211-2221.

Williams, W., Buongiorno, J., Hu, L.W., 2008. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes, J. Heat Transfer, 130(4), 402-412.

Womac, D.J., Incropera, F.P., Ramadhyani, S., 1994. Correlating equations for impingement cooling of small heat sources with multiple circular liquid jets. J. Heat Transfer, 116(2): 482-486.‏

Xie.H, Wang .J, Xi.T., liu.Y., 2002. Thermal conductivity of suspensions containing nano sized SiC particles, Int. J. Thermophys.,  23(2):571-580.

Yang, Y.T., Lai, F.H., 2010. Numerical study of heat transfer enhancement with the use of nanofluids in radial flow cooling system.  Int. J. Heat Mass Transfer,  53:ijhmt- 5895- 5904.

Yang, Y.T., Lai, F.H., 2011. Numerical investigation of cooling performance with the use of Al2O3/waternanofluids in a radial flow system, Int. J. Thermal Sciences, 50(1), 61-72.‏

Yousefi, T., Shojaeizadeh, E., Mirbagheri, H.R., Farahbaksh, B., Saghir, M.Z., 2013. An experimental investigation on the impingement of a planar jet of Al 2 O 3–water nanofluid on a V-shaped plate, Exp.Therm. FL Sci., 50: 114-126.‏

Yousefi-Lafouraki, B., Ramiar, A., Ranjbar, A., 2016. Numerical Simulation of Two Phase Turbulent Flow of Nanofluids in Confined Slot Impinging Jet, Flow, Turbulence and Combustion, 1-19.‏

Zeitoun, O., Ali, M., 2012. Nanofluid impingement jet heat transfer. Nanoscale Res Lett.,   7(1):1-13.

Zhao, Y., Masuoka, T., Tsuruta, T., Ma, C.F., 2002. Conjugated Heat Transfer on a Horizontal Surface Impinged by Circular Free-Surface Liquid Jet. JSME International Journal Series B Fluids and Thermal Engineering: JSME INT J B FLUID T J.,  45(2):307-314.

Zhou, M., Xia, G., Chai, L., 2015. Heat transfer performance of submerged impinging jet using silver nanofluids. Heat Mass Transfer, 51(2): 221-229.‏

Zhou, M., Xia, G., Chai, L., 2015. Heat transfer performance of submerged impinging jet using silver nanofluids. Heat and Mass Transfer, 51(2):221-229.

Zuckerman, N., Lior, N., 2006. Jet impingement heat transfer: physics, correlations, and numerical modeling. Advances in heat transfer: Adv. Heat Transfer, 39(1): 565-631.